STATE ESTIMATION FOR A CLASS OF DISCRETE-TIME PIECEWISE-LINEAR SYSTEMS

A. Birouche, J. Daafouz, and C. Iung

References

  1. [1] A. Bemporad, G. Ferrari-Trecate, & M. Morari, Observability and controllability of piecewise affine and hybrid systems, IEEE Transactions on Automatic Control, 45 (10), 2002, 1663–1676.
  2. [2] M. Johansson, Piecewise linear control systems in Lecture notes in control and information sciences, (Springer Berlin: Heidelberg, Germany, 2003).
  3. [3] D. Liberzon, Switching in systems and control (Birkhäuser Boston, Systems & control: foundations & applications, 2003).
  4. [4] R. Vidal, A. Chiuso, & S. Soatto, Observability and identifiability of jump linear systems, Proceedings of the 41st IEEE Conference on Decision and Control, 4, 2002, 3614–3619.
  5. [5] M. Babaali & M. Egerstedt, On the observability of piecewise linear systems, Proceedings of the CDC Decision and Control 43rd IEEE Conference, 1, 2004, 26–31.
  6. [6] E.D. Santis, M.D.D. Benedetto, & G. Pola, On observability and detectability of continuous-time linear switching systems, Proceedings of the 42nd IEEE Conference on Decision and Control, 6, 2003, 5777-5782.
  7. [7] A. Balluchi, L. Benvenuti, M.D.D. Benedetto, & A.L. Sangiovanni-Vincentelli, Observability for hybrid systems, Proceedings of the 42nd IEEE Conference on Decision and Control, 2, 2003, 1159–1164.
  8. [8] P. Collins & J.H.V. Schuppen, Observability of piecewise-affine hybrid systems, in Hybrid systems: Computation and control, Lecture notes in computer science, 2993, 2004, 265–279.
  9. [9] A. Alessandri & P. Coletta, Switching observers for continuous time and discrete-time linear systems, Proceedings of the American Control Conference the 2001, 3, 2001, 2516–2521.
  10. [10] S. Boyd, L.E. Ghaoui, B. Feron, & V. Balakrishnan, Linear matrix inequalities in system and control theory, in Studies in Applied Mathematics, Philadelphia, PA, 15, 1994.
  11. [11] J. Daafouz, G. Millerioux, & C. Iung, A poly-quadratic stability based approach for switched systems, International Journal of Control: Special issue on switched piecewise and polytopic linear systems, 47 (10), 2002, p. 1302.
  12. [12] G. Ferrari-Trecate, D. Mignone, & M. Morari, Moving horizon estimation for hybrid systems. IEEE Trans. Autom. Control, 47 (10): 2002, 1663–1676.
  13. [13] A. Balluchi, L. Benvenuti, & A.L. Sangiovanni-Vincentelli, Observers for hybrid systems with continuous state resets, Proceedings of the 10th Mediterranean Conference on Control and Automation – Med-2002, p. 321, Lisbon, Portugal, July 2002.
  14. [14] G. Feng, Nonsynchronized state estimation of discrete time piecewise linear systems, IEEE Transactions on Signal Processing, 54 (1), 2006, 295–303.
  15. [15] A.L. Juloski, W.P.M.H. Heemels, Y. Boers, & F. Verschure, Two approaches to state estimation for a class of piecewise affine systems, Proceedings of the 42nd IEEE Conference on Decision and Control, 1, 2003, 143–148.
  16. [16] A. Benali, D. Boutat, & J.P. Barbot, Une condition algbrique pour l’observabilit d’une classe de systmes hybrides, in Proceedings of IEEE CIFA, Tunisie, p. 128, Douz, Tunisia, 2004.
  17. [17] Z.-P. Jiang, B Sontag, & Y. Wang, Input-to-state stability for discrete-time nonlinear systems, Automatica, 37, 2001, 857–869.
  18. [18] J. Daafouz, G. Millerioux, & L. Rosier, Observer design with guaranteed bound for lpv systems. Proceedings of IFAC World Congress on Automatic Control, p. 3343, Prague, Czech Republic, 2005.

Important Links:

Go Back