A HYPERMAP APPROACH TO MULTIPLE SEQUENCE PROCESSING

A. Nyamapfene

References

  1. [1] J.L. Elman, Finding structure in time, Cognitive Science, 14,1990, 179–211.
  2. [2] M. Jordan, Serial order: A parallel distributed processingapproach, in J. Elman & D. Rumelhart (Eds.), Advances inconnectionist theory: Speech (Hillsdale, NJ: Erlbaum, 1989),214–249.
  3. [3] B. Ans, S. Rousset, R.M. French, & S. Musca, Preventingcatastrophic interference in multiple-sequence learning usingcoupled reverberating Elman networks, Proc. 24th AnnualConference of the Cognitive Science Society, NJ:LEA, 2002,71–76.
  4. [4] A. Ara´ujo & G. Barreto, Context in temporal sequence process-ing: A self-organizing approach and its application to robotics,IEEE Transactions on Neural Networks, 13(1), 2002, 45–57.
  5. [5] T. Kohonen, Self-organizing maps (Berlin: Springer, 1995).
  6. [6] T. Kohonen, The hypermap architecture, in T. Kohonen, K.Makisara, O. Simula & J. Kangas (Eds.), Artificial neural net-works, Vol. II (Amsterdam, The Netherlands: North-Holland,1991), 1357–1360
  7. [7] D. Wang & B. Yuwono, Anticipation-based temporal pat-tern generation, IEEE Transactions on Systems, Man, andCybernetics, 25(4), 1995, 615–628.
  8. [8] D. Wang & B. Yuwono, incremental learning of complextemporal patterns, IEEE Transactions on Neural Networks,7(6), 1996, 1465–1481.
  9. [9] D. Wang & A. Arbib, Complex temporal sequence learningbased on short-term memory, Proceedings of the IEEE, 78,1990, 1536–1543.
  10. [10] M.C. Mozer, Neural network architectures for temporal patternprocessing, in A.S. Weigend & N.A. Gershenfeld (Eds.), Timeseries prediction: Forecasting the future and understanding thepast (Redwood City, CA: Addison-Wesley Publishing, 1993),243–264.
  11. [11] W.S. McCulloch & W. Pitts, A logical calculus of the ideasimmanent in nervous activity, Bulletin of Mathematical Bio-physics, 5, 1943, 115–133 (Reprinted in Anderson & Rosenfeld,1988, 18–27).
  12. [12] D.O. Hebb, The organisation of behavior: A neuropsychologicaltheory (New York: Wiley, 1949).
  13. [13] S. Amari, Learning patterns and pattern sequences by self-organizing nets of threshold elements, IEEE Transactions onComputers, C-21, 1972, 1197–1206.
  14. [14] W.K. Estes, An associative basis for coding and organisation inmemory, in A.W. Melton & E. Martin (Eds.), Coding processesin human memory (Washington, DC: Winston, 1972), 161–190.
  15. [15] D.E. Rumelhart & D.A. Norman, Simulating a skilled typist:A study of skilled cognitive-motor performance. CognitiveScience, 6, 1982, 1–36.
  16. [16] K. Plunkett, Theories of early language acquisition, Trends inCognitive Sciences, 1(4), 1997, 146–153.
  17. [17] M.S.C. Thomas & A. Karmiloff-Smith, Modelling typical andatypical cognitive development, in U. Goswami (Ed.), Handbookof childhood development (Oxford: Blackwell Publishers, 2002),575–599.
  18. [18] A.J.C. Sharkey, Multi-net systems, in A.J.C. Sharkey (Ed.),Combining artificial neural nets: Ensemble and modular multi-net systems (London: Springer-Verlag, 1999), 1–30.165
  19. [19] A. Nyamapfene & K. Ahmad, Unsupervised multi-net simu-lation: An application to child development, Proc. Interna-tional Joint Conference on Neural Networks, Vancouver, BC,Canada, 2006, 2406–2412.
  20. [20] A. Nyamapfene & K. Ahmad, A multimodal model of childlanguage acquisition at the one-word stage, Proc. 20th In-ternational Joint Conference on Neural Networks, Orlando,Florida, USA, 2007.
  21. [21] L. Bloom, One word at a time: The use of single-wordutterances before syntax (The Hague: Mouton, 1973).
  22. [22] J.H. Flavell, Stage-related properties of cognitive development,Cognitive Psychology, 2, 1971, 421–453.
  23. [23] S. Quartz & T. Sejnowski, The neural basis of cognitivedevelopment: A constructivist manifesto, Behavioral and BrainSciences, 20(4), 1997, 537–596.

Important Links:

Go Back