REAL-TIME LANE AND VEHICLE DETECTION BASED ON A SINGLE CAMERA MODEL

B.-F. Wu, C.-T. Lin, and C.-J. Chen

References

  1. [1] B.F. Wu, C.J. Chen, C.C. Chiu, & T.C. Lai, A real-time ro-bust lane detection approach for autonomous vehicle environ-ment, Proc. IASTED Int. Conf. Signal and Image Processing,Honolulu, Hawaii, 2004, 518–523.
  2. [2] M. Bertozzi & A. Broggi, Vision-based vehicle guidance, Com-puter, 30, 1997, 49–55.
  3. [3] M. Bertozzi, A. Broggi, & A. Fascioli, Obstacle and lanedetection on ARGO autonomous vehicle, Proc. IEEE IntelligentTransportation System Conf. ’97, Boston, MA, 1997, 1010–1015.
  4. [4] M. Bertozzi & A. Broggi, GOLD: A parallel real-time stereovision system for generic obstacle and lane detection, IEEETransactions on Image Processing, 7, 1998, 62–81.
  5. [5] A. Broggi, M. Bertozzi, L. Guarino, C. Bianco, & A. Piazzi,Visual perception of obstacle and vehicles for platooning, IEEETransactions on Intelligent Transportation System, 1 (3), 2000,164–176.
  6. [6] D. Pomerleau, RALPH: Rapidly adapting lateral positionhandling, Proc. IEEE Intelligent Vehicle Symp., Detroit, 1995,506–511.
  7. [7] D. Pomerleau, Visibility estimation from a moving vehicle us-ing the RALPH vision system, Proc. IEEE Intelligent Trans-portation Systems, Boston, 1997, 906–911.
  8. [8] M. Chen, T. Jochem, & D. Pomerleau, AURORA: A vision-based roadway departure warning system, Proc. IEEE Intelli-gent Robots Systems, Pittsburgh, Pennsylvania, 1995, 243–248.
  9. [9] E.D. Dickmanns & B.D. Mysliwetz, Recursive 3-D road andrelative ego-state recognition, IEEE Transactions on PatternAnalysis and Machine Intelligence, 14, 1992, 199–213.
  10. [10] E.D. Dickmanns & V. Graefe, Dynamic monocular machinevision, Machine Vision and Applications, 1, 1988, 223–240.
  11. [11] E.D. Dickmanns & V. Graefe, Applications of dynamic monoc-ular machine vision, Machine Vision and Applications, 1, 1988,241–261.
  12. [12] K. Kluge & S. Lakshmanan, A deformable-template approach tolane detection, Proc. IEEE Intelligent Vehicle Symp., Detroit,1995, 54–59.
  13. [13] C. Kreucher & S. Lakshmanan, LANA: A lane extraction algo-rithm that uses frequency domain features, IEEE Transactionson Robotics and Automation, 15, 1999, 343–350.
  14. [14] A. Takahashi, Y. Ninomiya, M. Ohta, & K. Tange, A robustlane detection using real-time voting processor, Proc. IEEE onIntelligent Transportation Systems, Tokyo, 1999, 577–580.
  15. [15] Y. Wang, E.K. Teoh, & D. Shen, Lane detection using B-snake, Proc. IEEE on Information Intelligence and Systems,Bethesda, Maryland, 1999, 438–443.
  16. [16] J. Goldbeck & B. Huertgen, Lane detection and tracking byvideo sensors, Proc. IEEE/IEEJ/JSAI Int. Conf. on IntelligentTransportation Systems, Tokyo, 1999, 74–79.
  17. [17] J.C. McCall & M.M. Trivedi, Video-based lane estimation andtracking for driver assistance: Survey, system, and evaluation,IEEE Transactions on Intelligent Transportation System, 7 (1),2006, 20–37.
  18. [18] Y. He, H. Wang, & B. Zhang. Color-based road detectionin urban traffic scenes, IEEE Transactions on IntelligentTransportation System, 5 (4), 2004, 309–318.
  19. [19] H.Y. Cheng, B.S. Jeng, P.T. Tseng, & K.C. Fan, Lane detectionwith moving vehicles in the traffic scenes, IEEE Transactionson Intelligent Transportation System, 7 (4), 2006, 571–582.
  20. [20] P. Jeong & S. Nedevschi, Local difference probability (LDP)-based environment adaptive algorithm for unmanned groundvehicle, IEEE Transactions on Intelligent Transportation Sys-tem, 7 (3), 2006, 282–292.
  21. [21] M. Zayed & J. Boonaert, Obstacles detection from disparityproperties in a particular stereo vision system configuration,Proc. IEEE of Intelligent Transportation Systems, 2003, 311–316.
  22. [22] M. Bertozzi, A. Broggi, M. Cellario, A. Fascioli, P. Lombardi, &M. Porta, Artificial vision in road vehicles, Proceedings of theIEEE, 90(7), 2002, 1258–1271.
  23. [23] S. Nedevschi, R. Danescu, D. Frentiu, T. Marita, F. Oniga,C. Pocol, R. Schmidt, & T. Graf, High accuracy stereovision system for far distance obstacle detection, Proc. IEEEIntelligent Vehicles Symp., Parma, Italy, 2004, 292–297.158
  24. [24] J. Chu, L. Ji, L. Guo, B. Li, & R. Wang, Study on method ofdetecting preceding vehicle based on monocular camera, Proc.IEEE Intelligent Vehicles Symp., Parma, Italy, 2004, 750–755.
  25. [25] U. Franke & S. Heinrich, A study on recognition of road laneand movement of vehicles using vision system, SICE, Nagoya,2001, 38–41.
  26. [26] Z. Sun, G. Bebis, & R. Miller, Monocular precrash vehicledetection: Features and classifiers, IEEE Transactions onImage Processing, 15 (7), 2006, 2019–2034.
  27. [27] Z. Sun, G. Bebis, & R. Miller, On-road vehicle detection usingevolutionary gabor filter optimization, IEEE Transactions onIntelligent Transportation System, 6 (2), 2005, 252–260.
  28. [28] U. Franke & S. Heinrich, Fast obstacle detection for urban trafficsituations, IEEE Transactions on Intelligent TransportationSystem, 3, 2002, 173–181.
  29. [29] U. Franke, real-time stereo vision for urban traffic sceneunderstanding, IEEE Conf. Intelligent Vehicles, Detroit, MI,2000, 273–278.
  30. [30] M. Watanabe, N. Takeda, & K. Onoguchi, A moving objectrecognition method by optical flow analysis, Proc. of ICPR,Vienna, Austria, 1996, 528–533.
  31. [31] P. Viola & M. Jones, Robust real-time object detection, Intl.Workshop on Statistical and Computational Theories of Vision,February 2001.
  32. [32] P. Viola & M. Jones, Rapid object detection using a boostedcascade of simple features, Proc. IEEE Conf. on ComputerVision and Pattern Recognition, 1, 2001, 511–518.
  33. [33] B.F. Wu & C.T. Lin, A fuzzy vehicle detection based oncontour size similarity, Proc. IEEE Intelligent Vehicles Symp.,Las Vegas, Nevada, 2005, 495–500.
  34. [34] B.F. Wu, C.T. Lin, & C.J. Chen, A fast lane and vehicledetection approach for autonomous vehicles, Proc. the 7thIASTED Int. Conf. Signal and Image Processing, Honolulu,Hawaii, 2005, 306–310.
  35. [35] B.-F. Wu & C.-T. Lin, Robust lane detection and tracking fordriving assistance systems, Proc. IEEE Int. Conf. on Systems,Man and Cybernetics, Montreal, Quebec, Canada, 2007, 3848–3853.
  36. [36] K. Szabat & T. Orlowska-Kowalska, Performance improvementof industrial drives with mechanical elasticity using nonlin-ear adaptive Kalman filter, IEEE Transactions on IndustrialElectronics, 1 (3), 2008, 1075–1084.
  37. [37] M. Chueh, Y.L.W.A. Yeung, K.-P.C. Lei, & S.S. Joshi, Follow-ing controller for autonomous mobile robots using behavioralcues, IEEE Transactions Industrial Electronics, 55 (8), 2008,3124–3132.

Important Links:

Go Back