DENOISING OF TWO-DIMENSIONAL GEOMETRIC DISCONTINUITIES

J. Shen, D. Yoon, D. Zhao, and Y. Song

References

  1. [1] G.R. Arce & R.E. Foster, Detail preserving ranked-order basedfilters for image processing. IEEE Transactions on Acoustics,Speech and Signal Processing, ASSP-37(1), 1989, 83–98.
  2. [2] J.A. Bangham, Properties of a series of nested median filters,namely the data sieve. IEEE Transactions on Signal Processing,41(1), 1993, 31–42.
  3. [3] A.C. Bovik, T.S. Huang, & D.C. Munson, The effect of medianfiltering on edge estimation and detection. IEEE Transactionson Pattern Analysis and Machine Intelligence, 9(2), 1987,181–194.
  4. [4] A.B. Hamza, P.L. Luque-Escamilla, J. Martinez-Aroza, &R. Roman-Roldan, Removing noise and preserving details withrelaxed median filters. Journal of Mathematical Imaging andVision, 11, 1999, 161–177.
  5. [5] R.C. Hardie & K.E. Barner, Rank conditioned rank selectionfilters for signal processing. IEEE Transactions on SignalProcessing, 42(2), 1994, 192–206.
  6. [6] S.J. Ko & Y.H. Lee, Center weighted median filters and theirapplications to image enhancement. IEEE Transactions onCircuits Systems, 38(9), 1991, 984–993.
  7. [7] Y. Shen & K.E. Barner, Fuzzy vector median-based surfacesmoothing. IEEE Transactions on Visualization and ComputerGraphics, 10(3), 2004, 266–277.
  8. [8] T. Song, M. Gabbouj, & Y. Neuvo, Center weighted medianfilters: Some properties and applications in image processing.Signal Processing, 35(3), 1994, 213–229.
  9. [9] H. Yagou, Y. Ohtake, & A. Belyaev, Mesh smoothing viamean and median filtering applied to face normals. GeometricModeling and Processing, 2002, 124–131.
  10. [10] R. Yang, L. Yin, M. Gabbouj, J. Astola, & Y. Neuvo, Optimalweighted median filters under structural constraints. IEEETransactions on Signal Processing, 43(3), 1995, 591–604.
  11. [11] O. Yli-Harja, J. Astola, & Y. Neuvo, Analysis of the propertiesof median and weighted median filters using threshold logicand stack filter representation. IEEE Transactions on SignalProcessing, 39(2), 1991, 395–409.
  12. [12] C. Bajaj & G. Xu, Anisotropic diffusion of subdivision surfacesand functions on surfaces. ACM Transactions on Graphics,22(1), 2003, 4–32.
  13. [13] P. Choudhury & J. Tumblin, The trilateral filter for highcontrast images and meshes. Proceedings of the EurographicsSymposium on Rendering, 2003, 186–196.
  14. [14] U. Clarenz, U. Diewald, & M. Rumpf, Anisotropic geometricdiffusion in surface processing. Proceedings of IEEE Visualiza-tion, Salt Lake City, Utah, USA, 2000, 397–405.
  15. [15] M. Desbrun, M. Meyer, P. Schroder, & A.H. Barr, Anisotropicfeature-preserving denoising of height fields and bivariate data.Graphics Interface, Montreal, Quebec, Canada, 2000, 145–152.
  16. [16] S. Fleishman, I. Drori, & D. Cohen-Or, Bilateral mesh de-noising. Proc. 30th Annual Conf. on Computer Graphics andInteractive Techniques, 2003, 950–953.
  17. [17] K. Hildebrandt & K. Polthier, Anisotropic filtering of non-linear surface features. Computer Graphics Forum, 23(3), 2004,391–400.
  18. [18] T.R. Jones, F. Durant, & M. Desbrun, Non-iterative, feature-preserving mesh smoothing. Proc. 30th Annual Conf. on Com-puter Graphics and Interactive Techniques, San Diego, CA,USA, 2003, 943–949.
  19. [19] M. Meyer, M. Desbrun, P. Schroder, & A.H. Barr, Discretedifferential-geometry operators for triangulated 2-manifolds. In:H.C. Hege, K. Polthier (Eds.), Visualization and mathematicsIII (Heidelberg: Springer-Verlag; 2003), Heidelberg, Germany,35–57.
  20. [20] Y. Ohtake, A. Belyaev, & H. Seidel, Mesh smoothing byadaptive and anisotropic Gaussian filter. Vision, Modeling,and Visualization, 2002, 203–210.
  21. [21] P. Perona & J. Malik, Scale-space and edge detection usinganisotropic diffusion. IEEE Transactions on Pattern Analysisand Machine Intelligence, 12(7), 1990, 629–639.
  22. [22] T. Tasdizen, R.T. Whitaker, P. Burchard, & S. Osher,Anisotropic geometric diffusion in surface processing. IEEEVisualization, Boston, MA, USA, 2002, 125–132.
  23. [23] C. Tomasi & R. Manduchi, Bilateral filtering for gray andcolor images. Proceedings of IEEE ICCV, Bombay, India, 1998,836–846.
  24. [24] H. Zhang & E.L. Fiume, Mesh smoothing with shape or featurepreservation, in: J. Vince & R. Earnshaw (Eds.), Advances inModeling, Animation and Rendering, Springer, 2002, 167–182.
  25. [25] S. Fleishman, D. Cohen-Or, & C. Silva, Robust moving least-squares fitting with sharp features. ACM Transactions onGraphics, 24(3), 2005, 544–552.
  26. [26] T. Bulow, Spherical diffusion for 3D surface smoothing. IEEETransactions on Pattern Analysis and Machine Intelligence,26(12), 2004, 1650–1654.
  27. [27] T. Tasdizen & R.T. Whitaker, High-order nonlinear priors forsurface reconstruction. IEEE Transactions on Pattern Analysisand Machine Intelligence, 26(7), 2004, 878–891.
  28. [28] J. Shen, D. Yoon, H. Shou, D. Zhao, & S. Liu, A set of denoisingalgorithms for two-dimensional closed curves. Computer-AidedDesign and Applications, 3(1–4), 2006, 1–10.
  29. [29] H. Hoppe, T.D. Rose, T. Duchamp, J. MaDonald, & W.Stuetzle, Mesh optimization. Proc. 20th Annual Conf. onComputer Graphics and Interactive Techniques, Anaheim, CA,USA, 1993, 19–26.
  30. [30] Q. Xia, M.Y. Wang, & X. Wu, Orthogonal least squaresin partition of unity surface reconstruction with radial basisfunction. Geometric Modeling and Imaging – New Trends,London, England, 2006, 28–33.

Important Links:

Go Back