J. Wang,∗ Z. Qu,∗∗ M.S. Obeng,∗ and X. Wu∗
[1] I. Kolmanovsky & N.H. McClamroch, Developments in non-holonomic control problems, IEEE Control System Magazine,15, 1995, 20–36. [2] P. Morin & C. Samson, Motion control of wheeled mobilerobots, B. Siciliano & O. Khatib (Eds.), Handbook of Robotics,(New York: Springer-Verlag, 2008), 799–826. [3] R.W. Brockett, Asymptotic stability and feedback stabilization,in R.W. Brockett, R.S. Millman & H.J. Sussmann (Eds.), Dif-ferential Geometric Control Theory, (Boston, MA: BirkhauserVerlag), 1983, 181–191. [4] J. Guldner & V.I. Utkin, Stabilization of nonholonomic mobilerobots using lyapunov function for navigation and sliding modecontrol, in Proc. of the 33rd IEEE Conf. on Decision andControl, 1994, 2967–2972. [5] A. Astolfi, On the stabilization of nonholonomic systems, inProc. of the 33rd IEEE Conf. on Decision and Control., 1994,3481–3486. [6] C. Samson, Time-varying feedback stabilization of a nonholo-nomic wheeled mobile robot, International Journal of RoboticsResearch, 12, 1993, 55–66. [7] O.J. Sordalen, Exponential stabilization of nonholonomicchained systems, IEEE Transaction on Automatic Control, 40,1995, 35–49. [8] Z.P. Jiang & H. Nijmeijer, A recursive technique for track-ing control of nonholonomic systems in chained form, IEEETransaction on Automatic Control, 44 , 1999, 265–279. [9] Y. Kanayama, Y. Kimura, F. Miyazaki, & T. Noguchi, A stabletracking control method for an autonomous mobile robot, inProc. IEEE Conf. on Robotics Automation, Sacramento, CA,1990, 384–389. [10] E. Lefeber, A. Robertsson, & H. Nijmeijer, Linear controllers forexponential tracking of systems in chained form, InternationalJournal of Robust and Nonlinear Control, 10, 2000, 243–263. [11] M. Krstic, I. Kanellakopoulos, & P.V. Kokotovic, Nonlinearand Adaptive Control Design New York: Wiley, 1995. [12] R. Fierro and F.L. Lewis, Control of a nonholonomic mobilerobot using neural networks, IEEE Transactions on NeuralNetworks, 9, 1998, 589–600. [13] C.Y. Su & Y. Stepanenko, Robust motion/force control ofmechanical systems with classical nonholonomic constraints,IEEE Transactions on Automatic Control, 39, 1994, 609–614. [14] W. Dong & W.L. Xu, Adaptive tracking control of uncertainnonholonomic dynamic system, IEEE Transactions on Automa.Contr., 46, 2001, 450–454. [15] P. Morin & C. Samson, Control of nonholonomic mobile robotsbased on the transverse function approach, IEEE Transactionson Robotics, 48(9), 2003, 1496–1508. [16] Z. Qu, J. Wang, C.E. Plaisted, & R.A. Hull, A global-stabilizing near-optimal control design for real-time trajectorytracking and regulation of nonholonomic chained systems,IEEE Transactions on Automatic Control, 51, 2006, 1440–1456. [17] A. Bloch & S. Drakunov, Stabilization and tracking in thenonholonomic integrator via sliding modes, System and controlletter, 29, 1996, 91–99. [18] R.M. Murray & S.S. Sastry, Nonholonomic motion planning:Steering using sinusoids, IEEE Transaction on AutomaticControl, 38, 1993, 700–716. [19] F.L. Lewis, C.T. Abdallah, & D.M. Dawson, Control of RobotManipulators, (New York: Macmillan, 1993). [20] M. Reyhanoglu, A. Bloch, & N.H. McClamroch, Controland stabilization of nonholonomic dynamic systems, IEEETransaction on Automatic Control, 37, 1992, 1746–1757. [21] G.C. Walsh & L.G. Bushnell, Stabilization of multiple inputchained form control systems, System and Control Letters,25(3), 1995, 227–234. [22] S.S. Ge, C.C. Hang, T.H. Lee, & T. Zhang, Stable AdaptiveNeural Network Control Norwell, USA: (Kluwer AcademicPublisher 2001). [23] R.M. Sanner & J.E. Slotine, Gaussian networks for directadaptive control, IEEE Transaction on Neural Networks, 3,1992, 837–863. [24] E.B. Kosmatopoulos, M.M. Polycarpou, M.A. Christodoulou,& P.A. Ioannou, High-order neural network structures foridentification of dynamical systems, IEEE Transaction onNeural Networks, 6, 1995, 422–431. [25] L.X. Wang, Adaptive Fuzzy Systems and Control: Design andAnalysis (Englewood Cliffs, NJ: Prentice-Hall, 1994).210
Important Links:
Go Back