N.S. Bhuvaneswari,∗ G. Uma,∗∗ and T.R. Rangaswamy∗
[1] R. Anandanatarajan, M. Chidambaram, & T. Jayasingh, Lim-itations of a PI controller for a first order non-linear processwith dead time, ISA Transactions, 45, 2006, 185–200. [2] I.B. Lee & S.W. Sung, Limitations and countermeasures ofPID controllers, Industrial and Engineering Chemistry, 35,1996, 2596–2610. [3] J. Lan, J. Cho, D. Erdogmus, J.C. Principe, M.A. Motter,& J. Xu, Local linear PID controllers for nonlinear control,Control and Intelligent Systems, 33, 2005, 201–1541. [4] T.K. Madhubala, M. Boopathy, J.S. Chandra, & T.K. Rad-hakrishnan, Development and tuning of fuzzy controller fora conical level system, Proceedings of IEEE InternationalConference, ICISIP, 2004, 450–455. [5] N.S. Bhuvaneswari & P. Kanagasabapathy, Neural networkwith reinforcement learning for adaptive time optimal controlof tank level, Modeling and Simulation, AMSE, 1, 2000. [6] J. Malmbarg & J. Eker, Hybrid control of a double tanksystem, Proceedings of IEEE International Conference onControl Applications, 1997, 133–138. [7] F. Borrelli, M. Baotic, A. Bemporad, & M. Morari, An efficientalgorithm for computing the state feedback optimal controllaw for discrete time hybrid systems, Proc. of the AmericanControl Conference, 2003, 4717–4722. [8] T.L. Song & S.J. Shin, Time optimal impact angle control forvertical plane engagements, IEEE Transactions on Aerospaceand Electronic Systems, 35(2), 1999, 738–742. [9] N. Sakagami & S. Kawamura, Time optimal control for underwater robot manipulators based on iterative learning controland time-scale transformation, IEEE Transactions on Auto-matic Control, 2003, 1180–1186. [10] J.E. Kulkarni, Time optimal control of a swing, Proc. 42ndIEEE Conf. on Decision and Control, Hawaii, USA, 2003. [11] G. Fang & G. Dissanayake, Time-optimal feedback controlof a non-holonomic vehicle using neural networks, SeventhInternational Conference on Control, Automation, RoboticsAnd Vision (ICARCV’OZ), Singapore, 2002, 1458–1463. [12] Y. Chen, T. Edgar, & V. Manousiouthakis, On infinite timenon-linear quadratic optimal control Proc. 42nd Conf. onDecision and Control, Hawaii, USA, 2003, 221–226. [13] M. Reza Dehghan Nayeri, A. Alasty, & K. Daneshjou, Neuraloptimal control of flexible spacecraft slew maneuver, ActaAstronautica, 55, 2004, 817–827. [14] T.R. Rangaswamy, J. Shanmugam, & K.P. Mohammed, Adap-tive fuzzy tuned PID controller for combustion of utility boilers,Control and Intelligent Systems, 33(1), 2005. [15] K.-S. Hwang et al., Reinforcement learning to adaptive controlof nonlinear systems, IEEE Transactions On Systems, Man,And Cybernetics—Part B: Cybernetics, 33, 2003, 514–521. [16] N. Gol´ea et al., Fuzzy model reference adaptive control, IEEETransactions on Fuzzy Systems, 10, 2002, 436–444. [17] V. Mayuresh & Kothare et al., Level control in the steamgenerator of a nuclear power plant, IEEE Transactions OnControl Systems Technology, 8, 2000, 55–69. [18] M. Gyun Na et al., Design of a genetic fuzzy controller for thenuclear steam generator water level control, IEEE Transactionson Nuclear Science, 45, 1998, 2261–2271.193 [19] S.R. Munasinghe et al., Adaptive neurofuzzy controller toregulate UTSG water level in nuclear power plants, IEEETransactions on Nuclear Science, 2, 2005, 421–429. [20] X.J. Liu & F. Lara-Rosano, Model-reference adaptive con-trol using associate memory network, Control and IntelligentSystems, 33(1), 2004. [21] M. Tokuda, T. Yamamoto, & Y. Monden, A neural-net basedPID controllers for nonlinear multivariable systems Controland Intelligent Systems, 33 (1), 2005. [22] C.-H. Lee & Y.-C. Lin, An adaptive type-2 fuzzy neural con-troller for nonlinear uncertain systems Control and IntelligentSystems, 33(1), 2005. [23] M. Kosaka & H. Shibata, Auto-tuning of adaptive control withdead zone Control and Intelligent Systems, 34(1), 2006, 30–36.
Important Links:
Go Back