M. Kosaka∗ and H. Uda∗
[1] L. Ljung, System Identification: Theory for the User (USA:Prentice-Hall, 1987). [2] M. Kosaka, K. Koizumi, & H. Shibata, An identification methodfor a reduced model with zeroing 0 ∼ N-tuple integral valuesof output error, Transactions of the Society of Instrument andControl Engineers, 36(4), 2000, 319–327. [3] B. De Moor, M. Moonen, L. Vandenberghe, & J. Vandewalle,Identification of linear state space models with SVD usingcanonical correlation analysis, in E. Deprettere (Ed.) Singularvalue decomposition and signal processing, Elseviers SciencePublishers B.V., North Holland, 1988, 161–169. [4] M. Moonen, B. De Moor, L. Vandenberghe, & J. Vandewalle,On- and off-line identification of linear state-space models,International Journal of Control, 49 (1), 1989, 219–232. [5] P. Van Overschee & B. De Moor, Subspace Identification forLinear Systems (Kluwer Academic, 1996). [6] A.J. Van der Veen, E.F. Deprettere, & A. Swindlehurst,Subspace-based signal analysis using singular value decompo-sition, Proc. IEEE, 81(9), 1993, 1277–1308. [7] M. Verhaegen & P. Dewilde, Subspace model identification,part 1 & 2, International Journal of Control, 56(5), 1992, 1187–1210, 1211–1241, part 3, International Journal of Control,58(3), 1993, 555–586. [8] M. Viberg, Subspace-based methods for identification of lineartime-invariant systems, Automatica, 31(12), 1995, 1835–1851. [9] L. Ljung, System Identification Toolbox (USA: The Math-Works, Inc., 1997). [10] H.P. Zeiger & A.J. McEwen, Approximate linear realizationof given dimension via Ho’s algorithm, IEEE Transactions onAutomatic Control, AC-19-2, 1974, 153. [11] Z. Zang, R.R. Bitmead, & M. Gevers, Iterative weightedleast-squares identification and weighted LQG control design,Automatica, 31(11), 1995, 1577–1594. [12] T. S¨oderstr¨om & P. Stoica, System Identification (USA:Prentice-Hall, 1989).
Important Links:
Go Back