H.Y. Lau, X. Li, and R. Du
[1] W. He, Y.F. Zhang, K.S. Lee, & T.I. Liu, Developmentof a fuzzy-neuro system for parameter resetting of injectionmolding, Trans. ASME, Journal of Manufacturing Science andEngineering, 123 (1), 2001, 110–118. doi:10.1115/1.1286732 [2] E.B. Garvey, On-line quality control of injection molding usingneural networks, master’s thesis, Royal Melbourne Institute ofTechnology, Australia, 1997. [3] B.H.M. Sadeghi, A BP-neural network predictor model for plas-tic injection molding process, Journal of Materials ProcessingTechnology, 103, 2000, 411–416. doi:10.1016/S0924-0136(00)00498-2 [4] R. Ivester, K. Danai, & D. Kazmer, Automatic tuning ofinjection molding by the virtual search method, Trans. ASME,Journal of Manufacturing Science and Engineering, 120 (2),1998, 323–329. doi:10.1115/1.2830130 [5] V. Vapnik, Statistical learning theory (New York: Wiley, 1998). [6] B. Sch¨olkopf et al., Input space vs. feature space in kernel-based methods, IEEE Trans. on Neural Networks, 10 (5), 1999,1000–1017. doi:10.1109/72.788641 [7] J.A.K. Suykens & J. Vandewalle, Least squares support vectormachine classifiers, Neural Process Letter, 9 (3), 1999, 293–300. doi:10.1023/A:1018628609742 [8] J.A.K. Suykens, J. De Brabanter, L. Lukas, & J. Vandewalle,Weighted least squares support vector machines: robustnessand sparse approximation, Neurocomputing, 48, 2002, 85–105. doi:10.1016/S0925-2312(01)00644-0 [9] S.B. Sch¨olkopf, A tutorial on support vector regression: Neu-roCOLT, Technical report NC-TR-98-030, Royal HollowayCollege, University of London, 1998. [10] M. Orr, Regularisation in the selection of RBF centres, NeuralComputation, 7 (3), 1995, 606–623. doi:10.1162/neco.1995.7.3.606 [11] S. Chen, C.F.N. Cowan, & P.M. Grant, Orthogonal leastsquares learning algorithm for radial basis function networks,IEEE Trans. on Neural Networks, 2 (2), 1991, 302–309. doi:10.1109/72.80341 [12] Y.-H. Cheng & C.-S. Lin, A learning algorithm for radial basisfunction networks with the capability of adding and pruningneurons, Proc. IEEE Signal Processing, 1994, 797–801. [13] T. Poggio & F. Girosi, Regularization algorithms for learningthat are equivalent to multilayer networks, Science, 247, 1990,987–982. doi:10.1126/science.247.4945.978 [14] S. Haykin, Neural networks: A comprehensive foundation (NewYork: Macmillan, 1994). [15] D. Lowe, Adaptive radial basis function nonlinearities and theproblem of generalization, First Int. Conf. on Artificial NeuralNetworks, London, 1989, 171–175. [16] M. Kubat, Decision trees can initialize radial-basis functionnetworks, IEEE Trans. on Neural Networks, 9 (5), 1998, 813–824. doi:10.1109/72.712154 [17] H.Y. Lau, X.L. Li, K. Yeung, & R. Du, Predicting nozzlepressures in plastic injection molding processes using a hybridradial basis function neural network, 2004 Automation &Assembly Summit Conference, Fort Worth, TX, May 2004.Appendix AResults of the Two Design of ExperimentsA.1. The DOE for Case 1Figure A.1. The Pareto chart of |Effect/2| in Case 1.Table A.1Design Factors and their LevelsFactor A B C DName Nozzle Injection Injection Holdingtemperature pressure speed pressureHigh 205◦C 98 bar 80% 40 barlevel (+)Low 195◦C 80 bar 55% 5 barlevel (−)134Table A.2The DOE Results (I: Mean of High Level; II: Mean of Low Level)Run1 + + + + + + + 35.56752 + + + − − − − 36.19503 + − − + + − − 27.49254 + − − − − + + 26.52255 − + − + − + − 37.04256 − + − − + − + 37.86257 − − + + − − + 30.88258 − − + − + + − 28.1400I 31.4444 36.6669 32.6963 32.7463 32.2656 31.8181 32.7088II 33.4819 28.2594 32.2300 32.1800 32.6606 33.1081 32.2175Effect −2.0375 8.4075 0.4663 0.5662 −0.3950 −1.2900 0.4913Effect/2 −1.0188 4.2038 0.2331 0.2831 −0.1975 −0.6450 0.2456A.2. The DOE for Case 2Figure A.2. Pareto chart of |Effect/2| in Case 2.Table A.4The DOE Results (I: Mean of High Level; II: Mean of Low Level)Variables A B A×B C A×C B×C D Results (yi)Trail1 + + + + + + + 35.42 + + + − − − − 35.59753 + − − + + − − 33.41254 + − − − − + + 33.265 − + − + − + − 35.00756 − + − − + − + 34.77757 − − + + − − + 33.338 − − + − + + − 32.64I 34.4175 35.1956 34.2419 34.2875 34.0575 34.0769 34.1919II 33.9387 33.1606 34.1144 34.0688 34.2987 34.2794 34.1644Effect 0.4787 2.0350 0.1275 0.2187 −0.2412 −0.2025 0.0275Effect/2 0.2394 1.0175 0.0637 0.1094 −0.1206 −0.1013 0.0137Table A.3Design Factors and their LevelsVariable A B C DName Nozzle Injection Injection Holdingtemperature pressure speed pressureHigh 202◦C 90 bar 75% 35level (+)Low 198◦C 82 bar 60% 15level (−)135
Important Links:
Go Back