LOAD FLOW SOLUTION FOR ILL-CONDITIONED BY HOMOTOPY CONTINUATION METHOD

H.-C. Chen and L.-Y. Chung

References

  1. [1] B. Scott, Review of load flow calculation method, Proceedingsof the IEEE, 62 (7), 1974, 916–929.
  2. [2] B.K. Johnson, Extraneous and false load flow solutions, IEEETransactions on PAS, 86, 1977, 524–534. doi:10.1109/T-PAS.1977.32362
  3. [3] H. Wei, H. Sasaki, J. Kubokawa, & R. Yokoyama, A study ofoptimal power flow problems based on interior point nonlinearprogramming with a novel data structure, IEEE PICA 97,Proc. of Conf., Columbus, OH, USA, May 11–16, 1997, 134–141.
  4. [4] K.C. Almeida & R. Salgado, Optimal power flow solutionsunder variable load conditions, IEEE Transactions on PowerSystem, 15 (4), 2000, 1204–1211. doi:10.1109/59.898091
  5. [5] G.L. Torres & V.H. Quintana, Optimal power flow by anonlinear complementarity method, IEEE Transactions onPower System, 15 (3), 2000, 1028–1033. doi:10.1109/59.871729
  6. [6] N. Sato & W.F. Tinny, Techniques for exploiting the sparsityof the network admittance matrix, IEEE Transactions on PAS,82, 1963, 944–950. doi:10.1109/TPAS.1963.291477
  7. [7] W.F. Tinney & C.E. Hart, Power flow solution by Newton’smethod, IEEE Transactions on PAS, 86, 1967, 1449–1456. doi:10.1109/TPAS.1967.291823
  8. [8] A.M. Sasson, C. Trevino, & F. Aboytes, Improved Newton’sload flow through a minimization technique, IEEE Transactionson PAS, 90, 1971, 1924–1931.
  9. [9] S.C. Tripathy & G. Urga Prasad, Load-flow solutions for ill-conditioned power systems by quadratically convergent Newtonlike method, Proc. IEE, 127, (Pt. C) (5), 1980, 273–280.
  10. [10] S. Iwamoto & Y. Tamura, A load flow calculation methodfor ill-conditioned power system, IEEE Transactions on PAS,100, 1981, 1736–1743. doi:10.1109/TPAS.1981.316511
  11. [11] S.-T. Hu, Homotopy Theory (Detroit, Michigen: Wayne StateUniversity, 1959).
  12. [12] T.Y. Li & J.A. Yorke, A simple reliable numerical algorithmfor following homotopy paths, in Analysis and computation offixed points, Stephen Robinson, Ed. (New York: Academic,1980), pp. 73–91.
  13. [13] T.Y. Li, On Chow, Mallet-Paret and Yorke homotopy forsolving system of polynomials, Chinese Mathematical Journal,12 (2), 1983, 125–132.105
  14. [14] E. Allgower & K. Georg, Simplicial and continuation meth-ods for approximating fixed points and solutions systems ofequations, SIAM Review, 22 (1), 1980, 28–85. doi:10.1137/1022003
  15. [15] S.N. Chow, J. Mallet-Paret, & J.A. Yorke, Finding of maps:Homotopy methods that are constructive with probability one,Mathematics of Computation, 32 (143), 1978, 887–899. doi:10.2307/2006493
  16. [16] H. Saadat, Power system analysis (New York: McGraw-Hill,1999).

Important Links:

Go Back