R.C. Jha, T. Ghose, D.C. Sedimbi, and E.V.S. Lalitha
[1] P. Carpentier, G. Cohen, J.C. Culioli, & A. Renaud, Stochas-tic optimization of unit commitment: A new decompositionframework, IEEE Transactions on Power System, 11 (2), 1996. [2] G.B. Sheble & G.N. Fahd, Unit commitment literature synopsis,IEEE Transaction on Power System, 9 (1), 1994. [3] M.L. Fisher, Optimal solution of scheduling problems usingLagrangian multipliers: Part – I, Operation Research, 21, 1973,1104–1127. [4] A. Merlin & P. Sandrin, A new method for unit commitment atelectricite de France, IEEE Transactions on PAS, PAS-102 (5),1983, 1218–1225. doi:10.1109/TPAS.1983.318063 [5] S. Mokhtari, J. Singh, & B. Wollenberg, A unit commitmentexpert system, Proc. PICA, Montreal, Quebec Canada, 1987,400–405. [6] Z. Ouyang & S.M. Shedidehpour, Short term unit commitmentexpert system, Electric Power Systems Research, 18 (1), 1990,1–13. doi:10.1016/0378-7796(90)90020-4 [7] Z. Ouyang & S.M. Shahidehpour, A multi-stage intelligentsystem for unit commitment, IEEE Transaction on PWRS,Paper SM 322-8, San Diago, 1991. [8] H. Sasaki, M. Watanabe, J. Kubokome, N. Yosine, R.Yokoyama, A solution method of unit commitment by artificialneural networks, IEEE Transaction on PWRS, Paper 91SM437-4, San Diego, 1991. [9] Z. Ouyang & S.M. Shahidehpaur, A hybrid artificial neuralnetwork-dynamic programming approach to unit commitment,IEEE Transaction on PWRS, Paper 91SM438-2, San Diego,1991. [10] F. Zhnans & F.D. Galiana, Unit commitment by simulatedannealing, IEEE Transaction on PWRS-5 (1), 1990, 311–318. [11] D. Dasgupta & D.R. McGrager, Thermal unit commitmentusing genetic algorithm, IEE Proc. Generation, Transmission,Distribution, 141 (5), 1994. [12] S.A. Kazarlis, A.G. Bakirtzis, & V. Petridis, A genetic algo-rithm solution to the unit commitment problem, IEEE Trans-action on Power Systems, 11 (1), 1996. doi:10.1109/59.485989 [13] A. Bakirtzis, V. Petridis, & S. Kazarlis, Genetic algorithm solu-tion to the Economic dispatch problem, IEE Proc. Generation,Transmission, Distribution, 141 (4), 1994. [14] Po-Hung Chan & Hong-Chan Chang, Large-scale economicdispatch by genetic algorithm, IEEE Transaction on PowerSystem, 10 (4), 1995. [15] R.C. Jha, T. Ghose, S.K. Goswami, & I. Alam, Solution ofEconomic generation scheduling of thermal units using geneticalgorithm, Proc. Int. Conf. on Control, Instrumentation andInformation Communication, Calcutta University, Kolkata,India, 2001. [16] C.K. Pang, G.B. Sheble, & F. Albuyeh, Evaluation of dy-namic programming methods and multiple area representationfor thermal unit commitments, IEEE Transaction on PowerApparatus and System, PAS-100 (3), 1981. [17] K.D. Le, J.T. Day, B.L. Cooper, & E.W. Gibbsons, A globaloptimization method for scheduling thermal generation, hydrogeneration, and economy purchases, IEEE Transaction onPower Apparatus and System, PAS-102 (7), 1983. [18] H. Habibollahzadeh & J.A. Budenko, Application of decom-position techniques to short-term operation planning of hy-drothermal power system, IEEE Transaction on Power Sys-tems, PWRS-1 (1), Feb. 1986. [19] A. Merlin & S.M. Shahidehpour, A new method for unit com-mitment at Electricite France, Transaction on Power Appara-tus and System, PAS-102 (3), 1983. [20] R. Billington & R.N. Allan, Reliability evaluation of powersystems (New York, NY: Pitman Books, 1984). [21] G.J. Anders, Probability concepts in electric power systems(New York, NY: John Wiely and Sons, 1990).7 [22] J. Endereyeni, Reliability modeling in electric power system(New York: John Wiely and Sons, 1978). [23] Hong-Tzer Yang, Pai-Chuan Yang, & Ching-Lien Huang, Ap-plications of the genetic algorithm to the unit commitmentproblem in power generation industry, 0-7803-2461-7/95, IEEEInternational Conference on Fuzzy Systems, Yokohama, Japan,1, 20–24 March 1995, pp. 267–274.
Important Links:
Go Back