MOTION CONTROL OF A NONLINEAR SPRING BY REINFORCEMENT LEARNING

I.O. Bucak, M.A. Zohdy, and M. Shillor

References

  1. [1] D.S. Cameron, Platform Stabilization with a novel active suspension, doctoral diss., Oakland University, MI, USA, 1999.
  2. [2] D.S. Cameron, N.A. Kheir, & M. Shillor, Low energy active platform stabilizing suspension system, Proceedings of the world Automation Congress – ISIAC, Hawai, USA, 2000.
  3. [3] A.H. Klopf, Brain function and Adaptive Systems-A heterostatic theory, Technical Report AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford, MA, USA, 1972.
  4. [4] A.G. Barto & R.S. Sutton, Simulation of anticipatory responses in classical conditioning by a neuronlike adaptive element, Behavioral Brain Research, 4, 1982, 221–235. doi:10.1016/0166-4328(82)90001-8
  5. [5] A.G. Barto & P. Anandan, Pattern recognizing stochastic learning automata, IEEE Transactions on Systems, Man, and Cybernetics, 15, 1985, 360–375.
  6. [6] A.G. Barto, R.S. Sutton, & C.J.C. Watkins, Learning and sequential decision making, in Learning and computational neuroscience, ed. M. Gabriel & J. W. Moore (Cambridge, MA: MIT Press, 1990).
  7. [7] C.J.C.H. Watkins, Learning from delayed rewards, doctoral diss., Cambridge University, UK, 1989.
  8. [8] O. Omidvar & P. van der Smagt, eds., Neural systems for robotics (San Diego, CA: Academic Press, 1997).
  9. [9] R.S. Sutton, Temporal credit assignment in reinforcement learning, doctoral diss., University of Massachusetts, Amherst, USA, 1984.
  10. [10] R.S. Sutton, Learning to predict by the methods of temporal differences, Machine Learning, 3, 1988, 9–44.
  11. [11] A.G. Barto, R.S. Sutton, & C.W. Anderson, Neuronlike elements that can solve difficult learning problems, IEEE Trans. on Systems, Man, and Cybernetics, SMC-13 (5), 1983, 834–846.
  12. [12] R.S. Sutton, Reinforcement learning (Boston: Kluwer, 1996).
  13. [13] C.K. Chiang, H.Y. Chung, & J.J. Lin, A self-learning fuzzy logic controller using genetic algorithms with reinforcements, IEEE Transactions on Fuzzy Systems, 5(3), 1997, 460–467. doi:10.1109/91.618280
  14. [14] A.G. Barto, R.S. Sutton, & P.S. Brouwer, Associative search network: A reinforcement learning associative memory, Biological Cybernetics, 40, 1981, 201–211. doi:10.1007/BF00453370
  15. [15] K. Krishna Kumar, Adaptive Critics: Theory and applications, tutorial presented at Conf. Artificial Neural Networks in Engineering (ANNIE’96), St. Louis, MO, Nov. 10–13, 1996.
  16. [16] D.V. Prokhorov & D.C. Wunsch, Adaptive critic designs, IEEE Transactions on Neural Networks, 8(5), 1997, 997–1007. doi:10.1109/72.623201
  17. [17] V. Gullapalli, A stochastic reinforcement learning algorithm for learning real-valued functions, Neural Networks, 3, 1990, 671–692. doi:10.1016/0893-6080(90)90056-Q
  18. [18] K.T. Song & T.S. Chu, Reinforcement learning and its application to force control of an industrial robot, Control Engineering Practice, 6, 1998, 37–44. doi:10.1016/S0967-0661(97)10058-2
  19. [19] C.T. Lin & M.C. Kan, Adaptive fuzzy command acquisition with reinforcement learning, IEEE Transactions on Fuzzy Systems, 6(1), 1998, 102–121. doi:10.1109/91.660811
  20. [20] V. Gullapalli, J.A. Franklin, & H. Benbrahim, Acquiring robot skills via reinforcement learning, IEEE Control Systems, February 1994, 13–24. doi:10.1109/37.257890
  21. [21] I.O. Bucak, Nonlinear learning control by extended reinforcement learning, doctoral diss., Oakland University, USA, 2000.
  22. [22] I.O. Bucak & M.A. Zohdy, Reinforcement learning control of a biped robot system, International Journal of Intelligent Control and Systems, 3(4), 1999, 601–617.
  23. [23] Y. Dumont, D. Goeleven, M. Rochdi, & M. Shillor, Frictional contact of a nonlinear spring, Mathematical and Computer Modeling, 31, 2000, 83–97. doi:10.1016/S0895-7177(99)00225-3

Important Links:

Go Back