ON THE DYNAMIC TIP-OVER STABILITY OF WHEELED MOBILE MANIPULATORS

S.A.A. Moosavian and K. Alipour

References

  1. [1] S. Ali A. Moosavian, R. Rastegari, & E. Papadopoulos, Multiple impedance control for space free-flying robots, AIAA Journal of Guidance, Control, and Dynamics, 28 (5), September 2005, 939–947.
  2. [2] S. Ali A. Moosavian & E. Papadopoulos, Explicit dynamics of space free-flyers with multiple manipulators via SPACEMAPL, Journal of Advanced Robotics, 18 (2), 2004, 223–244.
  3. [3] R.B. McGhee & G.I. Iswandhi, Adaptive locomotion of a multilegged robot over rough terrain, IEEE Transactions on Systems, Man, and Cybernetics, SMC-9 (4), 1979, 176–182.
  4. [4] S. Dubowsky & E.E. Vance, Planning mobile manipulator motions considering vehicle dynamic stability constraints manipulators, Proc. IEEE Int. Conf. on Robotics and Automation, 1989, pp. 1271–1276.
  5. [5] S. Sugano, Q. Huang, & I. Kato, Stability criteria in controlling mobile robotic systems, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1993, pp. 832–838.
  6. [6] A. Goswami, Postural stability of biped robots and the foot rotation indicator (FRI) point, International Journal of Robotics Research, 18 (6), 1999, 523–533. doi:10.1177/02783649922066376
  7. [7] A. Goswami, Foot rotation indicator (FRI) point: A new gait planning tool to evaluate postural stability of biped robots, Proc. IEEE Int. Conf. on Robotics and Automation, Detroit, USA, 1999, pp. 47–52.
  8. [8] M. Vukobratovic & B. Borovac, Zero moment point: Thirty five years of its life, International Journal of Humanoid Robotics, 1 (1), 2004, 157–173. doi:10.1142/S0219843604000083
  9. [9] Q. Huang & S. Sugano, Motion planning of stabilization and cooperation of a mobile manipulator, Proc. IEEE/IROS, 1996, pp. 568–575.
  10. [10] J. Kim, W.K. Chung, Y. Youm, & B.H. Lee, Real-time ZMPcompensation method using null motion for mobile manipulators, Proc. IEEE Int. Conf. on Robotics and Automation, 2002, pp. 1967–1972.
  11. [11] B.S. Lin & S.M. Song, Dynamic modelling, stability and energy efficiency of a quadrupedal walking machine, Proc. IEEE Int. Conf. on Robotics and Automation, 1993, pp. 367–373.
  12. [12] A. Ghasempoor & N. Sepehri, A measure of machine stability for moving base manipulators, Proc. IEEE Int. Conf. on Robotics and Automation, 1995, pp. 2249–2254. doi:10.1109/ROBOT.1995.525596
  13. [13] E.G. Papadopoulos & D.A. Rey, A new measure of tipover stability margin for mobile manipulators, Proc. IEEE Int. Conf. on Robotics and Automation, 1996, pp. 3111–3116. doi:10.1109/ROBOT.1996.509185
  14. [14] E.G. Papadopoulos & D.A. Rey, The force–angle measure of tipover stability margin for mobile manipulators, Journal of Vehicle System Dynamics, 33, 2000, 29–48. doi:10.1076/0042-3114(200001)33:1;1-5;FT029
  15. [15] D.A. Rey & E.G. Papadopoulos, On-line automatic tipover prevention for mobile manipulators, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Grenoble, France, September 1997, pp. 1273–1278.
  16. [16] Y. Li, Dynamic stability analysis and control for the mobile manipulator, Proc. IEEE Canadian Conf. on Electrical & Computer Engineering, 2002, pp. 554–559.
  17. [17] R.F. Abo-Shanab & N. Sepehri, Tip-over stability of manipulator-like mobile hydraulic, ASME Journal of Dynamic Systems, Measurement, and Control, 127, June 2005, 295–301. doi:10.1115/1.1898239
  18. [18] S. Ali A. Moosavian & K. Alipour, Stability evaluation of mobile robotic systems using moment–height measure, Proc. IEEE Int. Conf. on Robotics, Automation and Mechatronics, Bangkok, Thailand, 7–9 June 2006, pp. 97–102.
  19. [19] S. Ali A. Moosavian & K. Alipour, Moment–height tip-over measure for stability analysis of mobile robotic systems, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China, October 9–15, 2006, pp. 5546–5551.
  20. [20] S. Scheding, G. Dissanayake, E.M. Nebot, & H.D. Whyte, An experiment in autonomous navigation of an underground mining vehicle, IEEE Transactions on Robotics and Automation, 15 (1), 1999, 85–95. doi:10.1109/70.744605
  21. [21] E. Papadopoulos & J. Poulakakis, Planning and model-based control for mobile manipulators, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, October 2000, pp. 1810–1815.
  22. [22] S.K. Saha & J. Angeles, Dynamics of nonholonomic mechanical systems using a natural orthogonal complement, ASME Journal of Applied Mechanics, 58, March 1991, 238–244. doi:10.1115/1.2897157
  23. [23] V.A. Sujan & S. Dubowsky, An optimal information method for mobile manipulator dynamic parameter identification, IEEE/ASME Transactions on Mechatronics, 2 (2), June 2003, 215–225. doi:10.1109/TMECH.2003.812830

Important Links:

Go Back