STEERING CONTROL ALGORITHM FOR DRIFT-FREE CONTROL SYSTEMS USING MODEL DECOMPOSITION: A WHEELED MOBILE ROBOT OF TYPE (1,1) EXAMPLE

F.U. Rehman, M.M. Ahmed, and N. Ahmed

References

  1. [1] I. Kolmanovsky & N.H. McClamroch, Developments in non-holonomic control problems, IEEE Control Systems Magazine,15, 1995, 20–36. doi:10.1109/37.476384
  2. [2] G. Dongbing & H. Huosheng, Receding horizon tracking control of wheeled mobile robots, IEEE Trans. on Control Systems Technology, 14 (4), 2006, 743–749. doi:10.1109/TCST.2006.872512
  3. [3] W.E. Dixon, Z.P. Jiang, & D.M. Dawson, Global exponential setpoint control of wheeled mobile robots: A Lyapunov approach, Automatica, 36, 2000, 1741–1746. doi:10.1016/S0005-1098(00)00099-6
  4. [4] O. Giuseppe & V. Marilena, A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism, IEEE Trans. Robotics, 21 (2), 2005, 162–175. doi:10.1109/TRO.2004.839231
  5. [5] L. Sheng, M. Guoliang, & H. Weili, Stabilization and optimal control of nonholonomic mobile robot, Control, Automation, Robotics and Vision Conf. (ICARCV 2004), 8, 2004, 1427–1430.
  6. [6] Z. Qu, J. Wang, & C.E. Plaisted, A new analytical solution to mobile robot trajectory generation in the presence of moving obstacles, IEEE Trans. on Robotics, 20, 2004, 978–993. doi:10.1109/TRO.2004.829461
  7. [7] A. Astolfi, Discontinuous control of the Brockett integrator, European Journal of Control, 4 (1), 1998, 49–63.
  8. [8] P. Lucibello & O. Giuseppe, Robust stabilization via iterative state steering with application to chained-form systems, Automatica, 37 (1), 2001, 71–79. doi:10.1016/S0005-1098(00)00124-2
  9. [9] M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. on Automatic Control, 43 (4), 1998, 475–482. doi:10.1109/9.664150
  10. [10] T.C. Lee, K. Song, C.H. Lee, & C.C. Teng, Tracking control of unicycle-modeled mobile robots using a saturation feedback controller, IEEE Trans. on Control Systems Technology, 9, 2001, 305–318. doi:10.1109/87.911382
  11. [11] L. Bushnell, D. Tilbury, & S.S. Sastry, Steering three input chained form nonholonomic systems using sinusoid: The fire truck example, European Control Conference, 1993, 1432–1437.
  12. [12] R.M. Murray & S.S. Sastary, Nonholonomic motion planning, IEEE Trans. on Automatic Control, 38, 1993, 700–716. doi:10.1109/9.277235
  13. [13] N. March & M. Alamir, Discontinuous exponential stabilization of chained form systems, Automatica, 39, 2003, 343–348. doi:10.1016/S0005-1098(02)00229-7
  14. [14] F.U. Rehman, Set point feedback stabilization of drift free systems, doctoral diss., McGill University, Montreal, 1997.
  15. [15] B. d’Andrea-Novel, B. Campion, & G. Bastin, Control of nonholonomic wheeled mobile robots by state feedback linearization, International Journal of Robotics Research, 14 (6), 1995, 543–559. doi:10.1177/027836499501400602

Important Links:

Go Back