A SMOOTH VARIABLE STRUCTURE FILTER FOR STATE ESTIMATION

S.Wang, S. Habibi, and R. Burton

References

  1. [1] N.S. Nise, Control systems engineering (Hoboken, NJ: John Wiley, 2004).
  2. [2] R.E. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82 (1), 1960, 35–46.
  3. [3] R.E. Kalman & R.S. Bucy, New results in linear filtering and prediction theory, ASME Journal of Basic Engineering, 83 (Series D), 1961, 95–108.
  4. [4] M.S. Grewal & A.P. Andews, Kalman filtering: theory and practice, second Edition (New York, NY: John Wiley & Sons Inc., 2001).
  5. [5] D. Luenberger, Observers for multivariable systems, IEEE Transaction on Automatic Control, 11, 1966, 190–197. doi:10.1109/TAC.1966.1098323
  6. [6] S. Haykin, Adaptive filter theory, Third Edition (Englewood Cliffs, NJ: Prentice-Hall, 1996).
  7. [7] S. Julier, J. Uhlmann, & H.F. Durrant-White, A new method for nonlinear transformation of means and covariances in filters and estimators, IEEE Transactions on Automatic Control, 45 (3), 2000, 477–482. doi:10.1109/9.847726
  8. [8] N.J. Gordon, D.J. Salmond, & A.F.M. Smith, Novel approach to nonlinear/non-Guassian Bayseian state estimation, IEE Proceedings-F, 140, 1993, 107–113.
  9. [9] A. Doucet, N. de Freitas, & N.J. Gordon, Sequential monte carlo methods in Practice (Springer Verlag: New York, 2001).
  10. [10] B. Ristic, S. Arulampalam, & N. Gordon, Beyond Kalmanfilter: Particle Filters for Tracking Applications (Artech House Publishers: New York, 2004).
  11. [11] S. R. Habibi & R. Burton, The variable structure filter, ASME Journal of Dynamic Systems, Measurement and Control, 125, 2003, 287–293. doi:10.1115/1.1590682
  12. [12] S.R Habibi & R. Burton, Parameter identification for a high performance hydrostatic actuation system using the variable structure filter concept, American Society of Mechanical Engineers, The Fluid Power and Systems Technology Division (Publication) FPST, 11, 2004, 93–101.
  13. [13] M. S. Grewal & A.P. Andrews, Kalman filtering: theory and practice using MATLAB, Second Edition (Englewood Cliffs, NJ: Prentice-Hall, 2001).
  14. [14] B.L. Walcott & S.H. Zak, State observation of nonlinear uncertain dynamical systems, IEEE Transaction on Automatic Control, 32, 1987, 166–170. doi:10.1109/TAC.1987.1104530
  15. [15] R.A. Adams, Calculus: a complete course (Don Mills, Ontario: Addison-Wesley Longman, 1999).
  16. [16] http://mathworld.wolfram.com/
  17. [17] J.E. Slotine, Sliding controller design for nonlinear systems, International Journal of Control, 40, 1984, 421–434. doi:10.1080/00207178408933284
  18. [18] S.R. Habibi & G. Singh, Derivation of design requirements for optimization of a high performance hydrostatic actuation system, International Journal of Fluid Power, 2, 2000, 11–27.
  19. [19] S. Wang, S. Habibi, & R. Burton, Sliding mode control for a model of an electrohydraulic actuator system with discontinuous nonlinear friction, Proc. 2006 American Control Conference, Minneapolis, MN, 2006, 5898–5904.
  20. [20] S.R. Habibi & G. Singh, Derivation of design requirements for optimization of a high performance hydrostatic actuation system, International Journal of Fluid Power, 2, 2000, 11–27.
  21. [21] S. Wang, S. Habibi, & R. Burton, Sliding mode control for a model of an electrohydraulic actuator system with discontinuous nonlinear friction, Proc. 2006 American Control Conference, Minneapolis, MN, 2006, 5898–5904.

Important Links:

Go Back