Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
SPACE VELOCITY AS AN INSUFFICIENT PARAMETER IN THE STEAM-REFORMING PROCESS
P.A. Erickson, D.D. Davieau, R.J. Kamisky, and Z.J. Zoller
References
[1] J.R. Rostrup-Nielsen, L.J. Christiansen, & J.H. Bak Hansen, Activity of steam reforming catalysts: Role and assessment, Applied Catalysis, 43, 1988, 283–303.
doi:10.1016/S0166-9834(00)82733-5
[2] K.E. Cox & K.D. Williamson, Hydrogen, its technology and implications, vol. IV: utilization of hydrogen (Cleveland, OH: CRC Press, 1977).
[3] S.P. Asprey, B.W. Wojciechowski, & B.A. Peppley, Kinetic studies using temperature-scanning: The steam-reforming of methanol, Applied Catalysis A: General, 179, 1999, 51–70.
doi:10.1016/S0926-860X(98)00300-7
[4] J.P. Sterchi, The effect of hydrocarbon impurities on the methanol steam-reforming process for fuel cell applications, doctoral dessertation, University of Florida, Gainesville, FL, 2001.
[5] S. Ahmed & M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells, International Journal of Hydrogen Energy, 26, 2001, 4.
doi:10.1016/S0360-3199(00)00097-5
[6] G.L. Ohl, J.L. Stein, & G.E. Smith, Fundamental factors in the design of a fast-responding methanol-to-hydrogen steam reformer for transportation applications, ASME Transactions, 118, 1996, 112.
[7] P.A. Erickson & V.P. Roan, Enhancing hydrogen production for fuel cell vehicles by superposition of acoustics fields on the reformer: A preliminary study, SAE Technical Paper 2003-01-0806, Detroit, USA, 2003, 1–7.
[8] J.M. Zalc & D.G. Loffler, Fuel processing for PEM fuel cells: Transport and kinetic issues of system design, Journal of Power Sources, 111, 2002, 58–64.
doi:10.1016/S0378-7753(02)00269-0
[9] P.J. deWild & M.J.F.M Verhaak, Catalytic production ofhydrogen from methanol, Catalysis Today, 60 (1), 2000, 3–10.
doi:10.1016/S0920-5861(00)00311-4
[10] S. Shiizaki, I. Nagashima, & S. Terada, The new concept of plate-fin type methanol reformer for PEFC and the development of catalyst with high heat transfer, Proc. 3rd International Fuel Cell Conference, Nagoya, Japan, Nov. 30–Dec. 3, 1999.
[11] M. Zanfir & A. Gavriilidis, Catalytic combustion assisted methane steam-reforming in a catalytic plate reactor, Chemical Engineering Science, 58, 2003, 3947–3960.
doi:10.1016/S0009-2509(03)00279-3
[12] D.G. Loffler, S.D. McDermott, & C.N. Renn, Activity and durability of water-gas shift catalysts used for the steam reforming of Methanol, Journal of Power Sources, 114, 2003, 15–20.
doi:10.1016/S0378-7753(02)00589-X
[13] W. Ruettinger, O. Ilinch, & R.J. Farrauto, A new generation of water gas shift catalysts for fuel cell applications, Journal of Power Sources, 118, 2003.
doi:10.1016/S0378-7753(03)00062-4
[14] P.A. Erickson, Enhancing the steam-reforming process with acoustics: An investigation for fuel cell vehicle Applications, doctoral dessertation, University of Florida, Gainesville, FL, 2002.
[15] X.R. Zhang, P. Shi, J. Zhao, M. Zhao, et al., Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts, Fuel Processing Technology, 83, 2003.
[16] A.V. Sapre, Catalyst deactivation kinetics from variable space-velocity experiments, Chemical Engineering Science, 52 (24), 1997, 4615–4623.
doi:10.1016/S0009-2509(97)00303-5
[17] K. Takeda, A. Baba, Y. Hishinuma, & T. Chikahisa, Performance of a methanol reforming system for a fuel cell powered vehicle and system evaluation of an PEFC system, Society of Automotive Engineers of Japan, 23, 2002, 183–188.
[18] N.A. Darwish, N. Hilal, G. Versteeg, & B. Heesink, Feasibility of the direct generation of hydrogen for fuel-cell powered vehicles by on-board steam reformation of naphtha, Fuel, 83, 2004, 409–417.
doi:10.1016/j.fuel.2003.10.001
Important Links:
Abstract
DOI:
10.2316/Journal.203.2007.3.203-3595
From Journal
(203) International Journal of Power and Energy Systems - 2007
Go Back