PHYSICAL INTELLIGENT SENSORS

P. Bandhil, S. Chitikeshi, C. Oesch, A. Maha jan, and F. Figueroa

References

  1. [1] N. Ghani, Sensor integration in ESPRIT, IFAC Proc., Karlsruhe, FDR, 1988, 323–328.
  2. [2] J. Pinkava, Towards a theory of sensory robotics, Robotica, 8, 1989, 245–256.
  3. [3] T. Lozano-Perez, M.T. Mason & R. Taylor, 1984, Automatic synthesis of fine motion strategies for robots, International Journal of Robotics Research, 3 (1), 1984, 2–24.
  4. [4] M. AbdelRahman & M.L. Smith, The impact of AI on sensing technology, SENSORS, 1991, 16–22.
  5. [5] T. Studt, Smart sensors widen views on measuring data, R&D Magazine, 1994, 18–20.
  6. [6] F. Figueroa & A. Mahajan, Generic model of an autonomous sensor, Mechatronics, 4(3), 1994, 295–315. doi:10.1016/0957-4158(94)90006-X
  7. [7] T. Henderson & E. Shilcrat, Logical sensor systems, Journal of Robotic Systems, 1 (2), 1989, 169–193. doi:10.1002/rob.4620010206
  8. [8] T. Henderson, C. Hansen, & B. Bhanu, The Specification of distributed sensing and control, Journal of Robotic Systems, 2 (4), 1985, 387–396. doi:10.1002/rob.4620020405
  9. [9] D. DeCoste, Dynamic across-time measurement and interpretation, Artificial Intelligence, 51, 1991, 273–341. doi:10.1016/0004-3702(91)90113-X
  10. [10] A. Mahajan & F. Figueroa, Dynamic across time autonomous-sensing, interpretation, model learning and maintenance theory (DATA-SIMLAMT), Mechatronics, 5(6), 1995, 665–693.
  11. [11] M.P. Henry & D.W. Clarke, The self-validating sensor: rationale, definitions and examples, Control Engineering Practice, 1 (4), 1993, 585–610.
  12. [12] M. Henry, Sensor validation and fieldbus, Computing and Control Engineering Journal, 1995, 263–269. doi:10.1049/cce:19950605
  13. [13] M. Henry, Plant asset management via intelligent sensors-digital, distributed and for free, Computing and Control Engineering Journal, 2000, 211–213.
  14. [14] J. Schmalzel, F. Figueroa, J. Morris, S. Mandayam et al., An architecture for intelligent systems based on smart sensors, IEEE Trans. on Instrumentation and Measurement, 54 (4), 2005, 1612–1616. doi:10.1109/TIM.2005.851477
  15. [15] IEEE standard for a smart transducer interface for sensors and actuators—network capable application processor (NCAP) information model. Available: online at www.ieee.org.
  16. [16] D. Abbott, Development and evaluation of sensor concepts for ageless aerospace vehicles, Report 1, CSIRO TIP Report no. TIPP 1516, 2001.
  17. [17] D. Abbott, Development and evaluation of sensor concepts for ageless aerospace vehicles, Report 2, CSIRO TIP Report no. TIPP 1517.
  18. [18] D.C. Price, D.A. Scott, G.C. Edwards, A. Batten et al., An integrated health monitoring system for an ageless aerospace vehicle, in Fu-Kuo Chang (Ed.), Proc. of the Structural Health Monitoring 2003: From Diagnostics & Prognostics to Structural Health Management, DEStech Publications (Lancaster, PA), 2003, 310–318.
  19. [19] W. Maul, ISHM/ NASA session—work and technology atNASA—algorithms for intelligent elements IEEE Sensors forIndustry Conf., 2005.
  20. [20] P. Wang, P. Valencia, M. Prokopenko, D.C. Price et al., Self-reconfigurable sensor networks in ageless aerospace vehicles, Proc. of the 11th Int. Conf. on Advanced Robotics (ICAR-03), Coimbra, Portugal, 2003.
  21. [21] H. Lovatt, G.T. Poulton, D.C. Price, M. Prokopenko et al., Self-organising impact boundaries in ageless aerospace vehicles, Proc. of the 2nd Int. Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS ’03), Melbourne, Australia, July 2003.
  22. [22] R.M. Newman & E.I. Gaura, Using very large arrays ofintelligent sensors, Proc. of the 2003 IEEWASME Int. Conf.on Advanced Intelligent Mechartonics (AIM 2003).
  23. [23] E.I. Gaura & R.M. Newman, Intelligent sensing: neural network based health diagnosis for sensor arrays, Proc. of the 2003 IEEE/ASME Int. Conf. on Advanced Intelligent Mechartonics (AIM 2003).
  24. [24] L.E. Minh-Duc, Thi-Hoang-Hoa, V.U. Thi-Huong, L.E. Duc-Vang et al., An automatic control system applying decoupling control methodology for ship harbor maneuvers, Proc. of the 2003 IEEE/ASME Int. Conf. on Advanced Intelligent Mechartonics (AIM 2003).
  25. [25] G. Seliger, U. Kross & A. Buchholz, Efficient maintenance approach by on-board monitoring of innovative freight wagon bogie, Proc. of the 2003 IEEE/ASME Int. Conf. Of Advanced Intelligent Mechatronics (AIM 2003).
  26. [26] Z. Changfan, H. Jing, L. Yonghong & C. Yeqing, Intelligent temperature control of ignition furnace in sintering machine, Proc. of 2004 IEEE Conf. on Cybernetics and Intelligent Systems, Singapore, 2004.
  27. [27] Frank L. Greitzer, Lars J. Kangas, Kristine M. Terrones, Melody A. Maynard et al., Gas turbine engine health monitoring and prognostics, Proc. of the Int. Society of Logistics (SOLE) 1999 Symp., Las Vegas, Nevada, 1999.
  28. [28] J.R. McDonald, S.D.J. McArthur & G.M. Burt, Intelligent system applications for power system control and management, Computing & Control Engineering Journal, 12(2), April 2001, 85–91. doi:10.1049/cce:20010206
  29. [29] K. Hyder & B. Perrin, Embedded systems design using the Rabbit 3000 microprocessor, Butterworth-Heinemann College, ISBN: 0750678720, 2005.
  30. [30] D.J. Malloy, C. Biegl, J.F. Zakrajsek, C.M. Meyer et al., Development of a near real-time turbine engine testing diagnostic system using feature extraction algorithms, Proc. of the 13th Int. Symp. on Air Breathing Engines, ISABE 97-7144, September 1997, 1–10.

Important Links:

Go Back