S. Chen, D.F. Sang, and C.-S. Peng
[1] S.W. Bollinger & S.F. Midkeff, Heuristic technique for processor and link assignment in multicomputers, IEEE Trans. on Computers, 40(3), 1991, 325–333. doi:10.1109/12.76410 [2] F.T. Leighton, Introduction to parallel algorithms and architectures: Arrays, trees, hypercubes (San Mateo, CA: Morgan Kaufmann 1992). [3] B. Monien & H. Sudborough, Simulating binary trees onhypercubes, Lecture Notes in Computer Science, vol. 319(Corfu: Springer-Verlag, 1994), 170–180. [4] D.R. O’Hallaron, Uniform approach for solving some classical problems on a linear array, IEEE Trans. on Parallel and Distributed System, 2(2), 1991, 236–241. doi:10.1109/71.89068 [5] S. Ramakrishnan & I. Cho, A close look at task assignment in distributed systems, Proc. Conf. on Computer Communication, Bal Harbour, 1991. [6] R. Aleliunas & A. Rosenberg, On embedding rectangular grids 129 in square grids, IEEE Trans. on Computers, c-31(9), 1982, 907–913. doi:10.1109/TC.1982.1676109 [7] F.C. Sang & I.H. Sudborough, Embedding large meshes into small ones, Int. Symp. on Circuits and Systems, New Orleans, 1990. [8] A. Bouabdallah, M.C. Heydemann, J. Opatrny, & D. Sotteau, Embedding complete binary trees into star network, Proc. of Mathematical Foundations of Computer Science, Kosice, 1994. [9] S.Y. Hsieh & G.H. Chen, Hamiltonian-laceability of star graphs, Proc. of Int. Symp. on Parallel Architectures, Algorithms and Networks, Taipei, 1997. [10] Y.C. Tseng, S.H. Chang, J.P. Sheu, Fault-tolerant ring embedding in a star graph with both link and node failures, IEEE Trans. Parallel Distributed Systems, 1997. [11] S. Bettayeb, Z. Miller, C.-S. Peng, & I.H. Sudborough, Embedding k-d meshes into optimum hypercubes with dilation 2k-1, Lecture Notes in Computer Science, vol. 805 (Montreal, Springer-Verlag, 1994). [12] S. Bettayeb, Z. Miller, & I.H. Sudborough, Embedding grids into hypercubes, Journal of Computer and System Science, 45, 1992, 340–366. doi:10.1016/0022-0000(92)90030-M [13] M.Y. Chan, Embedding of grids into optimal hypercubes, SIAM Journal of Computing, 20(5), October 1991, 834–864. doi:10.1137/0220052 [14] T. Lai & A.P. Sprague, Placement of the processors of a hypercube, IEEE Trans. on Computers, 40(6), 1991, 714–722. doi:10.1109/12.90250 [15] C.N. Hung, K.Y. Liang, & L.H. Hsu, Embedding hamiltonian paths and hamiltonian cycles in faulty pancake graphs, Proc. Int. Symp. on Parallel Architectures, Algorithms and Networks, Manila, 2002. [16] M.H. Heydari & I.H. Sudborough, On sorting by prefix reversals the diameter of pancake networks, Lecture Notes in Computer Science, vol. 678 (Paderborn: Springer-Verlag, 1993), 218–227. [17] C.-S. Peng, Shuffling simulation, International Journal of Modelling and Simulation, 20(1), 2000, 40–43. [18] S. Bhatt, F. Chung, F.T. Leighton, & A. Rosenberg, Efficient embeddings of tress in hypercubes, SIAM Journal of Computing, 21(1), 1992, 151–162. doi:10.1137/0221012 [19] S. Bhatt, F. Chung, J.W. Hong, F.T. Leighton, & A. Rosenberg, Optimal simulation by butterfly networks, Proc. Annual ACM Theory of Computer Science Conf., Atlanta, 1988. [20] Oak Ridge National Laboratory, http://www.ornl.org, 2004. [21] Parallel Virtual Machine, http://www.csm.ornl.gov/pvm/pvm_home.html, 2004.
Important Links:
Go Back