ORDER REDUCTION OF DISCRETE SYSTEMS USING STEP RESPONSE MATCHING

S. Mukherjee, V. Kumar, and R. Mitra

References

  1. [1] V. Sreeram & P. Agathokolis, Model reduction of linear discrete systems via weighted impulse response gramians, International Journal of Control, 53(1), 1991, 129–144. doi:10.1080/00207179108953613
  2. [2] C.G. Chung, K.W. Han, & H.H. Yeh, Simplification and identification of transfer function via step response matching, Journal of the Franklin Institute, 311(4), 1981, 231–241. doi:10.1016/0016-0032(81)90002-8
  3. [3] T.F. Edgar, Least square model reduction using step response matching, International Journal Control, 22, 1975, 261–270. doi:10.1080/00207177508922080
  4. [4] C.P. Therapos, A direct method for model reduction of discrete systems, Journal of the Franklin Institute, 318(4), 1984, 243–251. doi:10.1016/0016-0032(84)90013-9
  5. [5] F.F. Shoji, K. Abe, & H. Takeda, A two-step iterative method for discrete-time systems reduction, Journal of the Franklin Institute, 315(4), 1983, 247–257. doi:10.1016/0016-0032(83)90076-5
  6. [6] L.R. Pujara & K. Rattan, A frequency matching method for model reduction of digital control systems, International Journal Control, 35 (1), 1982, 139–148. doi:10.1080/00207178208922607
  7. [7] C.S. Hsieh & C. Hwang, Model reduction of linear discrete time systems using bilinear schwarz approximations, International Journal of System Science, 21(1), 1990, 33–49. doi:10.1080/00207729008910346
  8. [8] O.A. Sebakhy & M. N. Aly, Discrete time model reduction with optimal zero location by non-minimization, IEE Proc. Control Theory Appl., 145(6), 1998, 499–506. doi:10.1049/ip-cta:19982400

Important Links:

Go Back