REDUCED ORDER KALMAN FILTERING WITHOUT MODEL REDUCTION

D. Simon

References

  1. [1] A. Gelb, Applied optimal estimation (Cambridge, MA: MIT Press, 1974).
  2. [2] R. Brown & P. Hwang, Introduction to random signals and applied Kalman filtering (New York: John Wiley & Sons,1996).
  3. [3] G. Soto, E. Mendes, & A. Razek, Reduced-order observers for rotor flux, rotor resistance and speed estimation for vector controlled induction motor drives using the extended Kalman filter technique, IEE Proc.—Electric Power Applications, 146(3), 1999, 282–288.
  4. [4] D. Pham, J. Verron, & M. Roubaud, A singular evolutiveextended Kalman filter for data assimilation in oceanography, Journal of Marine Systems, 16, 1998, 323–340. doi:10.1016/S0924-7963(97)00109-7
  5. [5] B. Friedland, On the properties of reduced-order Kalman filters, IEEE Trans. on Automatic Control, 34(3), 1989, 321–324. doi:10.1109/9.16423
  6. [6] D. Haessig & B. Friedland, Separate-bias estimation with reduced-order Kalman filters, IEEE Trans. on Automatic Control, 43(7), 1998, 983–987. doi:10.1109/9.701106
  7. [7] K. Yonezawa, Reduced-order Kalman filtering with incomplete observability, Journal of Guidance and Control, 3(3), 1980, 280–282.
  8. [8] J. Ballabrera-Poy, A. Busalacchi, & R. Murtugudde, Application of a reduced-order Kalman filter to initialize a coupled atmosphere—ocean model: impact on the prediction of El Nino, Journal of Climate, 14, 2001, 1720–1737. doi:10.1175/1520-0442(2001)014<1720:AOAROK>2.0.CO;2
  9. [9] S. Cohn & R. Todling, Approximate data assimilation scheme for stable and unstable dynamics, Journal of the Meteorological Society of Japan, 74(1), 1996, 63–75.
  10. [10] M. Verlaan & A. Hemmink, Reduced rank square root filters for large scale data assimilation problem, 2nd Int. Symp. on Assimilation of Observations in Meteorology and Oceanography, Tokyo, 1995, 247–252.
  11. [11] L. Glielmo, P. Marino, R. Setola, & F. Vasca, ReducedKalman filtering for indirect adaptive control of the induction motor, International Journal of Adaptive Control and Signal Processing, 8, 1994, 527–541. doi:10.1002/acs.4480080602
  12. [12] J. Aranda, J. De La Cruz, S. Dormido, P. Ruiperez, &R. Hernandez, Reduced-order Kalman filter for alignment,Cybernetics and Systems, 25, 1994, 1–16. doi:10.1080/01969729408902312
  13. [13] J. Burl, A reduced order extended Kalman filter for sequential images containing a moving object, IEEE Trans. on Image Processing, 2(3), 1993, 285–295. doi:10.1109/83.236537
  14. [14] A. Patti, A. Tekalp, & M. Sezan, A new motion-compensated reduced-order model Kalman filter for space-varying restoration of progressive and interlaced video, IEEE Trans. on Image Processing, 7(4), 1998, 543–554. doi:10.1109/83.663499
  15. [15] S. Charleston & M. Azimi-Sadjadi, Reduced order Kalman filering for the enhancement of respiratory sounds, IEEE Trans. on Biomedical Engineering, 43(4), 1996, 421–424. doi:10.1109/10.486262
  16. [16] K. Simon & A. Stubberud, Reduced order Kalman filter,International Journal of Control, 10(5), 1969, 501–509. doi:10.1080/00207176908905851
  17. [17] C. Sims, Reduced-order modelling and filtering, in C. Leondes (Ed.), Control and dynamic systems, 18 (New York: Academic Press, 1982), 55–103.
  18. [18] D. Bernstein & D. Hyland, The optimal projection equations for reduced-roder state estimation, IEEE Trans. on Automatic Control, AC-30(6), 1985, 583–585. doi:10.1109/TAC.1985.1104001
  19. [19] K. Nagpal, R. Helmick, & C. Sims, Reduced-order estimation: Part I. Filtering, International Journal of Control, 45, 1987, 1867–1888. doi:10.1080/00207178708933852
  20. [20] J. Keller & M. Darouach, Reduced-order Kalman filter with unknown inputs, Automatica, 34(11), 1998, 1463–1468. doi:10.1016/S0005-1098(98)00094-6
  21. [21] J. Keller, A new strategy for designing a reduced-order Kalman filter, International Journal of Systems Science, 30(11), 1999, 1161–1166. doi:10.1080/002077299291633
  22. [22] B. Anderson & J. Moore, Optimal filtering (Englewood Cliffs, NJ: Prentice-Hall, 1979).
  23. [23] D. Simon & D.L. Simon, Aircraft turbofan engine health estimation using constrained Kalman filtering, ASME Journal of Engineering for Gas Turbines and Power, 127(2), 2005, 323–328. doi:10.1115/1.1789153
  24. [24] K. Parker & K. Melcher, The modular aero-propulsion systems simulation (MAPSS) users’ guide, NASA Technical Memorandum 2004-212968, March 2004.

Important Links:

Go Back