COMBINED USE OF UNSUPERVISED AND SUPERVISED LEARNING FOR LARGE-SCALE POWER SYSTEM STATIC SECURITY ASSESSMENT

M. Boudour and A. Hellal

References

  1. [1] D.J. Sobajic & Y.H. Pao, Artificial neural-net based dynamicsecurity assessment, IEEE Trans. on Power Systems, 4(1),1989, 220–228. doi:10.1109/59.32481
  2. [2] M.A. El Sharkawi, R.J. Marks & S. Weerasooriya, Neuralnetworks and their application to power engineering, Controland Dynamic Systems, 41, pt. 1, 1991, 359–461.
  3. [3] Y. Mansour, E. Vaahedi & M.A. El Sharkawi, Dynamic securitycontingency screening and ranking using neural networks, IEEETrans. on Neural Networks, 8(1), 1997, 942–950. doi:10.1109/72.595894
  4. [4] M.E. Aggoune, Power system security assessment using artifi-cial neural networks, doctoral diss., University of Washington,Seattle, WA, 1988.
  5. [5] R.D. Reed & R.J. Marks, Neural smithing: Supervised learningin feedforward ANN (Cambridge, MA: MIT Press, 1999).
  6. [6] S. Weerasooriya & M.A. El Sharkawi, Use of Karhunen-Loe’veexpansion in training neural networks for static security assess-ment, Proc. 1st Int. Forum on Applications of Neural Netwoksto Power Systems, Seattle, WA, 1991, 59–64. doi:10.1109/ANN.1991.213498
  7. [7] Y.H. Pao & D.J. Sobajic, Combined use of unsupervised andsupervised learning for dynamic security assessment, IEEETrans. on Power Systems, 7(2), 1992, 878–884. doi:10.1109/59.141799
  8. [8] M. Djukanovic, B. Babic, D.J. Sobajic & Y.H. Pao, Unsuper-vised/supervised learning concept for 24-hour load forecasting,IEE Proc.—C, 140(4), 1993, 311–318.
  9. [9] D. Niebur & A.J. Germond, Power system static securityassessment using the Kohonen neural network classifier, IEEETrans. Power Systems, 7(2), 1992, 865–872. doi:10.1109/59.141797
  10. [10] K.L. Lo & L.J. Peng, Application of Kohonen self-organizingneural network to static security assessment, IEE Conf. onArtificial Neural Networks, Manchester, 409, 1995, 387–392. doi:10.1049/cp:19950587
  11. [11] D. Srinivasan, S.C. Chang & A.C. Liew, Power system securityassessment and enhancement using artificial neural networks,Proc. IEEE Conf. on Energy Management and Power Delivery,EMPD 2, 1998, 582–587. doi:10.1109/EMPD.1998.702750
  12. [12] S. Kaski, J. Kangas & T. Kohonen, Bibliography of self-organizing map (SOM) papers, Neural Computing Surveys,1(3 & 4), 1998, 1–176.
  13. [13] A. Rauber & D. Merkel, The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data,IEEE Trans. on Neural Networks, 13(6), 2002, 1331–1341. doi:10.1109/TNN.2002.804221
  14. [14] O. Alsac & B. Stott, Optimal load flow with steady statesecurity, IEEE Trans. on Power Apparatus & Systems, 19,1974, 745–751. doi:10.1109/TPAS.1974.293972
  15. [15] M. Boudour & A. Hellal, A new dynamic fast decoupled loadflow technique, JTEA’94, Tunis, 1994, 108–115.162
  16. [16] F.S. Prabhakara & G.T. Heydt, Review of pattern recognitionmethods for rapid analysis of transient stability, IEEE PowerEngineering Society Technical Report, PWRS, 1987.
  17. [17] R.J. Marks II, R.D. Reed, M.J. Damborg & L.E. Atlas, Theeffect of stochastic interconnects in artificial neural networkclassification, IEEE Int. Conf. on Neural Networks, Seattle,WA, 1988, 358–362.
  18. [18] T. Kohonen, Fast evolutionary learning with batch-type self-organizing maps, Neural Processing Letters, 54, 1999, 127–136.
  19. [19] M. Boudour & A. Hellal, Self-organizing feature maps forpower system dynamic security assessment using synchronizingand damping torques technique, Proc. 29th Annual Conf. ofthe IEEE Industrial Electronics Society, Roanoke, VI, 2003,752–758. doi:10.1109/IECON.2003.1280077

Important Links:

Go Back