ON THE MODELLING AND COMPUTATION OF NONLINEAR MULTIBODY CABLE SYSTEMS

B. Fox, L.S. Jennings, and A.Y. Zomaya

References

  1. [1] R.R. Ryan, ADAMS-multibody system analysis software, inW.O. Schiehlen (Ed.), Multibody systems handbook (Berlin:Springer-Verlag, 1990), 361–402.
  2. [2] R.C. Smith & E.J. Haug, DADS—Dynamic analysis and designsystem, in W.O. Schiehlen (Ed.), Multibody systems handbook,(Berlin: Springer-Verlag, 1990) 161–180.
  3. [3] G.D. Byrne & W.E. Schiesser, An overview of recent develop-ments in numerical methods and software for ODEs/DAEs/PDEs, in G.D. Byrne & W.E. Schiesser (Eds.), Recent devel-opments in numerical methods and software for ODEs/DAEs/PDEs, 1 (Singapore: World Scientific, 1992), 1–7.
  4. [4] L.R. Petzold, A description of DASSL: A differential-algebraicsystem solver, in R. Stepleman (Ed.), Scientific Computing:Applications of mathematics and computing to the physicalsciences, 2 (New York: North Holland, 1983), 65–68.
  5. [5] L.R. Petzold & A.C. Hindmarsh, LSODAR: Livermore solver ofordinary differential equations with automatic method switch-ing and root finding, Computing and Mathematics ResearchDivision, 1-316 Lawerence Livermore National Laboratory,(Livermore, CA, 1987).
  6. [6] C.W. Gear, An introduction to numerical methods for ODEsand DAEs, in E.J. Haug & R.C. Deyo (Eds.), Real timeintegration methods for mechanical system simulation, NATOASI Series, F69, 1 (Berlin: Springer-Verlag, 1991), 115–126.
  7. [7] B. Simeon, C. Fuhrer, & R. Rentrop, Differential-algebraicequations in vehicle system dynamics, Surveys on Mathematicsfor Industry, 1, Springer-Verlag, 1991, 1–37.
  8. [8] E.J. Haug (Ed.), Computer aided analysis and optimizationof mechanical system dynamics, NATO ASI Series, Vol. F9(Berlin: Springer-Verlag, 1984).
  9. [9] P.E. Nikravesh, Computer aided analysis of mechanical systems(Englewood Cliffs, NJ: Prentice-Hall, 1988).
  10. [10] A.A. Shabana, Computational dynamics (New York: JohnWiley & Sons, 1994).
  11. [11] U.M. Ascher & L.R. Petzold, Computer methods for ordi-nary differential equations and differential-algebraic equations(Philadelphia: Society for Industrial & Applied Mathematics,1998).
  12. [12] K.E. Brenan, S.L. Campbell, & L.R. Petzold, Numerical solu-tion of initial-value problems in differential-algebraic equations(New York, NY: Elsevier Science, 1989).
  13. [13] D-S. Bae & E.J. Haug, A recursive formulation for constrainedmechanical system dynamics: Part I, open loop systems,Mechanics of Structures and Machines, 15(3), 1987, 359–382.
  14. [14] D-S. Bae & E.J. Haug, A recursive formulation for constrainedmechanical system dynamics: Part II, closed loop systems,Mechanics of Structures and Machines, 15(4), 1988, 481–506.
  15. [15] D-S. Bae & E.J. Haug, A recursive formulation for constrainedmechanical system dynamics: Part III, parallel processor im-plementation, Mechanics of Structures and Machines, 16(2),1988, 249–269.
  16. [16] S.S. Kim & E.J. Haug, A recursive formulation for flexiblemultibody dynamics: Part I, open-loop systems, ComputerMethods in Applied Mathematics and Engineering, 71(3), 1988,293–314. doi:10.1016/0045-7825(88)90037-0
  17. [17] S.S. Kim & E.J. Haug, A recursive formulation for flexiblemultibody dynamics: Part II, closed-Loop systems, ComputerMethods in Applied Mathematics and Engineering, 74(3), 1989,251–269. doi:10.1016/0045-7825(89)90051-0
  18. [18] K. Changizi & A.A. Shabana, A recursive formulation for thedynamic analysis of open loop deformable multibody systems,Journal of Applied Mechanics, 55, 1988, 687–693.
  19. [19] B. Fox, L.S. Jennings, & A.Y. Zomaya, Numerical computationof differential algebraic equations for non-linear dynamics ofmultibody android systems in automobile crash simulation,IEEE Trans. on Biomedical Engineering, 46(10), 1999, 1199–1206. doi:10.1109/10.790496
  20. [20] B. Fox, L.S. Jennings, & A.Y. Zomaya, Numerical computa-tion of differential algebraic equations for the approximationof artificial satellite trajectories and planetary ephemerides,ASME Journal of Applied Mechanics, 67(3), 2000, 574–580. doi:10.1115/1.1313820
  21. [21] B. Fox, L.S. Jennings, & A.Y. Zomaya, The computation ofconstrained dynamical systems: Matching physical modellingwith numerical methods, IEEE/AIP Computing in Science &Engineering, 3(1), 2001, 28–36. doi:10.1109/5992.895185
  22. [22] B. Fox, L.S. Jennings, & A.Y. Zomaya, Constrained dynamicscomputations: Models and case studies, World Scientific Seriesin Robotics and Intelligent Systems—Vol. 16 (London: WorldScientific, 2000), 77–92.160
  23. [23] J.H. Choi, M. Campanelli, A.A. Shabana, & R.A. Wehage,Approximation methods in the nonlinear analysis of planartracked vehicles, Vehicle System Dynamics, 29, 1998, 181–211. doi:10.1080/00423119808969372
  24. [24] B. Fox, L.S. Jennings, & A.Y. Zomaya, Numerical computationof differential algebraic equations for non-linear dynamics ofmultibody systems involving contact forces, ASME Journal ofMechanical Design, 123(2), 2001, 272–281. doi:10.1115/1.1353587
  25. [25] T. Nakanishi & A.A. Shabana, Contact forces in the nonlineardynamic analysis of tracked vehicles, International Journal forNumerical Methods in Engineering, 37, 1994, 1251–1275. doi:10.1002/nme.1620370802
  26. [26] T. Nakanishi & A.A. Shabana, On the numerical solution oftracked vehicle dynamic equations, Nonlinear Dynamics, 6(6),1994, 391–417.
  27. [27] M.K. Sarwar, T. Nakanishi, & A.A. Shabana, Chain linkdeformation in the nonlinear dynamics of tracked vehicles,Journal of Vibration and Control, 1(2), 1995, 201–224. doi:10.1177/107754639500100205
  28. [28] R.A. Ibrahim & W.K. Chang, Stochastic excitation of sus-pended cables involving three simultaneous internal resonancesusing Monte Carlo simulation, Computer Methods in AppliedMechanics and Engineering, 168, 1999, 285–304. doi:10.1016/S0045-7825(98)00146-7
  29. [29] U.M. Ascher & L.R. Petzold, Numerical methods for bound-ary value problems in differential-algebraic equations, in G.D.Byrne & W.E. Schiesser (Eds.), Recent developments in numer-ical methods and software for ODEs/DAEs/PDEs (Singapore:World Scientific, 1992), 125–136.
  30. [30] L.R. Petzold, Y. Ren, & T. Maly, Regularization of higher-indexdifferential-algebraic equations with rank-deficient constraints,SIAM Journal on Scientific Computing, 18(3), 1997, 753–774. doi:10.1137/S1064827593276041
  31. [31] J. Yen & L.R. Petzold, An efficient Newton-type iteration for thenumerical solution of highly oscillatory constrained multibodydynamic systems, SIAM Journal on Scientific Computing,19(5), 1998, 1513–1534. doi:10.1137/S1064827596297227

Important Links:

Go Back