X. Zhang, X.L. Xiao, J.W. Tian, J. Liu, and G.Y. Xu
[1] V. Vapnik, The nature of statistical learning theory (New York:Springer-Verlag, 1995). [2] C. Burges, A tutorial on support vector machines for patternrecognition, Data Mining and Knowledge Discovery, 2 (2),1998, 121–167. doi:10.1023/A:1009715923555 [3] C. Cortes & V. Vapnik, Support vector networks, MachineLearning, 20, 1995, 273–297. [4] D. Xin & Z.H. Wu, Speaker recognition using continuousdensity support vector machines, Electronics Letters, 37 (17),2001, 1099–1101. doi:10.1049/el:20010741 [5] E. Osuna, R. Freund, & F. Girosit, Training support vectormachines: An application to face detection, Proc. IEEE Conf.on Computer Vision and Pattern Recognition, San Juan, PuertoRico, 1997, 17–19. doi:10.1109/CVPR.1997.609310 [6] Q. Zhao & J. Principe, Support vector machines for SARautomatic target recognition, IEEE Trans. on Aerospace andElectronic Systems, 37 (2), 2001, 643–654. doi:10.1109/7.937475 [7] K.I. Kim, K. Jung, S.H. Park, & H.J. Kim, Support vectormachines for texture classification, IEEE Trans. on PatternAnalysis and Machine Intelligence, 24 (11), 2002, 1542–1550. doi:10.1109/TPAMI.2002.1046177 [8] E.N. Issam, Y.Y. Yang, N. Miles, P. Galatsanos, & R.M.Nishikawa, A support vector machine approach for detection ofmicrocalcifications, IEEE Trans. on Medical Imaging, 21 (12),2002, 1552–1563. doi:10.1109/TMI.2002.806569 [9] M. Bazaraa, D. Sherali, & C. Shetty, Nonlinear programming:Theory and algorithms (New York: Wiley, 1992). [10] C.W. Hsu & C.J. Lin. A comparison of methods for multi-classsupport vector machines, IEEE Trans. on Neural Networks,13 (2), 2002, 415–425. doi:10.1109/72.991427 [11] M.E. Petersen & E. Pelikan, Detection of bone tumours inradiographic images using neural networks, Pattern Analysis& Applications, 2, 1999, 172–183. doi:10.1007/s100440050026 [12] R.M. Haralick, K. Shanmugam, & I. Dinstein, Textual featuresfor image classification, IEEE Trans. on Systems, Man andCybernetics, 3, 1973, 610–621. doi:10.1109/TSMC.1973.4309314 [13] K.R. Muller, S. Mika, G. Ratsch, K. Tsuda, & B. Scholkopf,An introduction to kernel-based learning algorithms, IEEETrans. on Neural Networks, 12, 2001, 181–201. doi:10.1109/72.914517 [14] C.C. Chang & C.J. Lin, LIBSVM: A library for sup-port vector machines, 2001, Software available at http://www.csie.ntu.edu.tw/∼cjlin/papers/libsvm.ps.gz. [15] W.E. Reddick, J.O. Glass, E.N. Cook, & T.D. Elkin, Auto-mated segmentation and classification of multispectral mag-netic resonance images of brain using artificial neural networks,IEEE Trans. on Medical Imaging, 16 (6), 1997, 911–918. doi:10.1109/42.650887 [16] D.L. Pham & J.L. Prince, An adaptive fuzzy c-means al-gorithm for image segmentation in the presence of intensityinhomogeneities, Pattern Recognition Letters, 20 (1), 1999,57–68. doi:10.1016/S0167-8655(98)00121-4
Important Links:
Go Back