MAXIMIZING PERFORMANCE AND ROBUSTNESS OF PI AND PID CONTROLLERS BY GLOBAL OPTIMIZATION

L. Carotenuto, P. Pugliese, and Ya.D. Sergeyev

References

  1. [1] K.J. ˚Aström & T. Hägglund, PID Controllers: Theory, Designand Tuning, 2nd ed. (Research Triangle Park, NC, USA:Instrument Society of America, 1995).
  2. [2] K.K. Tan, Q.G. Wang, C.C. Hang, & T. Hägglund, Advancesin PID control (London: Springer, 1999).
  3. [3] A. Datta, M.T. Ho, & S.P. Bhattacharyya, Structure andsynthesis of PID controllers (London: Springer, 2000).
  4. [4] K.J. ˚Aström, P.L. Albertos, & J. Quevedo (Eds.), Special issueon PID control, Control Engineering Practice, 9(11), 2001.
  5. [5] K.J. ˚Aström & T. Hägglund, The future of PID control, ControlEngineering Pract., 9(11), 2001, 1163–1175. doi:10.1016/S0967-0661(01)00062-4
  6. [6] W.K. Ho, K.W. Lim, & W. Xu, Optimal gain and phasemargin tuning for PID controllers, Automatica, 34(8), 1998,1009–1014. doi:10.1016/S0005-1098(98)00032-6
  7. [7] W.K. Ho, K.W. Lim, C.C. Hang, & L.Y. Ni, Getting more phasemargin and performance out of PID controllers, Automatica,35(9), 1999, 1579–1585. doi:10.1016/S0005-1098(99)00055-2
  8. [8] G.J. Silva, A. Datta, & S.P. Bhattacharyya, New results on thesynthesis of PID controllers, IEEE Trans. Automatic Control,47(2), 2002, 241–252. doi:10.1109/9.983352
  9. [9] K.J. ˚Aström, H. Panagopoulos, & T. Hägglund, Design ofPI controllers based on non-convex optimization, Automatica,34(5), 1998, 585–601. doi:10.1016/S0005-1098(98)00011-9
  10. [10] Y.G. Wang & H.H. Shao, Optimal tuning for PI controllers,Automatica, 36(1), 2000, 147–152. doi:10.1016/S0005-1098(99)00130-2
  11. [11] H. Panagopoulos, K.J. ˚Aström, & T. Hägglund, Design of PIDcontrollers based on constrained optimization, Proc. AmericanControl Conf., San Diego, CA, 1999, 3858–3862.
  12. [12] H. Panagopoulos & K.J. ˚Aström, PID control design andH∞ loop shaping, International Journal of Robust NonlinearControl, 10(15), 2000, 1249–1261. doi:10.1002/1099-1239(20001230)10:15<1249::AID-RNC514>3.0.CO;2-7
  13. [13] C. Hwang & C.Y. Hsiao, Solution of a non-convex optimizationarising in PI/PID control design, Automatica, 38(11), 2002,1895–1904. doi:10.1016/S0005-1098(02)00115-2
  14. [14] V. Balakrishnan & S. Boyd, Global optimization in controlsystem analysis and design, in C.T. Leondes (Ed.), Controland dynamic systems, 53 (NY: Academic Press, 1993).
  15. [15] S. Malan, M. Milanese, & M. Taragna, Robust analysis anddesign of control systems using interval arithmetic, Automatica,33(7), 1997, 1363–1372. doi:10.1016/S0005-1098(97)00028-9
  16. [16] X. Zhu, Y. Huang, & J. Doyle, Genetic algorithms andsimulated annealing for robustness analysis, Proc. AmericanControl Conf., Albuquerque, NM, 1997, 3756–3760.
  17. [17] M.S. Fadali, Y. Zhang, & S.J. Louis, Robust stability analysisof discrete-time systems using genetic algorithms, IEEE Trans.on Systems, Man and Cybernetics—Part A, 29(5), 1999, 503–508. doi:10.1109/3468.784176
  18. [18] M. Vidyasagar, Statistical learning theory and randomizedalgorithms for control, IEEE Control System Magazine, 18(6),1998, 69–85. doi:10.1109/37.736014
  19. [19] D. Famularo, P. Pugliese, & Ya.D. Sergeyev, A global optimization technique for checking parametric robustness, Automatica,35(9), 1999, 1605–1611. doi:10.1016/S0005-1098(99)00058-8
  20. [20] D. Famularo, P. Pugliese, & Ya.D. Sergeyev, A global optimization technique for fixed-order control design, Proc. AmericanControl Conf., San Diego, CA, 1999, 2300–2304.
  21. [21] R.G. Strongin, The information approach to multiextremaloptimization problems, Stochastics and Stochastics Reports,27, 1989, 65–82.
  22. [22] Ya.D. Sergeyev & D.L. Markin, An algorithm for solving globaloptimization problems with nonlinear constraints, Journal ofGlobal Optimization, 7(4), 1995, 407–419. doi:10.1007/BF01099650
  23. [23] R.G. Strongin & D.L. Markin, Minimization of multiextremalfunctions with nonconvex constraints, Cybernetics, 22, 2003,486–493. doi:10.1007/BF01075079
  24. [24] R.G. Strongin & Ya.D. Sergeyev, Global optimization withnon-convex constraints: Sequential and parallel algorithms(Dordrecht: Kluwer, 2000), 514–516.
  25. [25] Ya.D. Sergeyev, D. Famularo, & P. Pugliese, Index informationalgorithm with local tuning for solving multidimensional globaloptimization problems with multiextremal constraints, Math.Programming, series A, 96, 2003, 489–512. doi:10.1007/s10107-003-0372-z

Important Links:

Go Back