Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
MAXIMIZING PERFORMANCE AND ROBUSTNESS OF PI AND PID CONTROLLERS BY GLOBAL OPTIMIZATION
L. Carotenuto, P. Pugliese, and Ya.D. Sergeyev
References
[1] K.J. ˚Aström & T. Hägglund, PID Controllers: Theory, Designand Tuning, 2nd ed. (Research Triangle Park, NC, USA:Instrument Society of America, 1995).
[2] K.K. Tan, Q.G. Wang, C.C. Hang, & T. Hägglund, Advancesin PID control (London: Springer, 1999).
[3] A. Datta, M.T. Ho, & S.P. Bhattacharyya, Structure andsynthesis of PID controllers (London: Springer, 2000).
[4] K.J. ˚Aström, P.L. Albertos, & J. Quevedo (Eds.), Special issueon PID control, Control Engineering Practice, 9(11), 2001.
[5] K.J. ˚Aström & T. Hägglund, The future of PID control, ControlEngineering Pract., 9(11), 2001, 1163–1175.
doi:10.1016/S0967-0661(01)00062-4
[6] W.K. Ho, K.W. Lim, & W. Xu, Optimal gain and phasemargin tuning for PID controllers, Automatica, 34(8), 1998,1009–1014.
doi:10.1016/S0005-1098(98)00032-6
[7] W.K. Ho, K.W. Lim, C.C. Hang, & L.Y. Ni, Getting more phasemargin and performance out of PID controllers, Automatica,35(9), 1999, 1579–1585.
doi:10.1016/S0005-1098(99)00055-2
[8] G.J. Silva, A. Datta, & S.P. Bhattacharyya, New results on thesynthesis of PID controllers, IEEE Trans. Automatic Control,47(2), 2002, 241–252.
doi:10.1109/9.983352
[9] K.J. ˚Aström, H. Panagopoulos, & T. Hägglund, Design ofPI controllers based on non-convex optimization, Automatica,34(5), 1998, 585–601.
doi:10.1016/S0005-1098(98)00011-9
[10] Y.G. Wang & H.H. Shao, Optimal tuning for PI controllers,Automatica, 36(1), 2000, 147–152.
doi:10.1016/S0005-1098(99)00130-2
[11] H. Panagopoulos, K.J. ˚Aström, & T. Hägglund, Design of PIDcontrollers based on constrained optimization, Proc. AmericanControl Conf., San Diego, CA, 1999, 3858–3862.
[12] H. Panagopoulos & K.J. ˚Aström, PID control design andH∞ loop shaping, International Journal of Robust NonlinearControl, 10(15), 2000, 1249–1261.
doi:10.1002/1099-1239(20001230)10:15<1249::AID-RNC514>3.0.CO;2-7
[13] C. Hwang & C.Y. Hsiao, Solution of a non-convex optimizationarising in PI/PID control design, Automatica, 38(11), 2002,1895–1904.
doi:10.1016/S0005-1098(02)00115-2
[14] V. Balakrishnan & S. Boyd, Global optimization in controlsystem analysis and design, in C.T. Leondes (Ed.), Controland dynamic systems, 53 (NY: Academic Press, 1993).
[15] S. Malan, M. Milanese, & M. Taragna, Robust analysis anddesign of control systems using interval arithmetic, Automatica,33(7), 1997, 1363–1372.
doi:10.1016/S0005-1098(97)00028-9
[16] X. Zhu, Y. Huang, & J. Doyle, Genetic algorithms andsimulated annealing for robustness analysis, Proc. AmericanControl Conf., Albuquerque, NM, 1997, 3756–3760.
[17] M.S. Fadali, Y. Zhang, & S.J. Louis, Robust stability analysisof discrete-time systems using genetic algorithms, IEEE Trans.on Systems, Man and Cybernetics—Part A, 29(5), 1999, 503–508.
doi:10.1109/3468.784176
[18] M. Vidyasagar, Statistical learning theory and randomizedalgorithms for control, IEEE Control System Magazine, 18(6),1998, 69–85.
doi:10.1109/37.736014
[19] D. Famularo, P. Pugliese, & Ya.D. Sergeyev, A global optimization technique for checking parametric robustness, Automatica,35(9), 1999, 1605–1611.
doi:10.1016/S0005-1098(99)00058-8
[20] D. Famularo, P. Pugliese, & Ya.D. Sergeyev, A global optimization technique for fixed-order control design, Proc. AmericanControl Conf., San Diego, CA, 1999, 2300–2304.
[21] R.G. Strongin, The information approach to multiextremaloptimization problems, Stochastics and Stochastics Reports,27, 1989, 65–82.
[22] Ya.D. Sergeyev & D.L. Markin, An algorithm for solving globaloptimization problems with nonlinear constraints, Journal ofGlobal Optimization, 7(4), 1995, 407–419.
doi:10.1007/BF01099650
[23] R.G. Strongin & D.L. Markin, Minimization of multiextremalfunctions with nonconvex constraints, Cybernetics, 22, 2003,486–493.
doi:10.1007/BF01075079
[24] R.G. Strongin & Ya.D. Sergeyev, Global optimization withnon-convex constraints: Sequential and parallel algorithms(Dordrecht: Kluwer, 2000), 514–516.
[25] Ya.D. Sergeyev, D. Famularo, & P. Pugliese, Index informationalgorithm with local tuning for solving multidimensional globaloptimization problems with multiextremal constraints, Math.Programming, series A, 96, 2003, 489–512.
doi:10.1007/s10107-003-0372-z
Important Links:
Abstract
DOI:
10.2316/Journal.201.2006.3.201-1558
From Journal
(201) Mechatronic Systems and Control (formerly Control and Intelligent Systems) - 2006
Go Back