COMPARING FREQUENCY DOMAIN, OPTIMAL, AND ASYMPTOTIC FILTERING: A TUTORIAL

V. Cerný and J. Hrušék

References

  1. [1] R.E. Kalman & R.S. Bucy, New results in linear filteringand prediction theory, Journal of Basic Engineering (ASME),83(D), 1961, 95–108.
  2. [2] R.S. Bucy & P.D. Joseph, Filtering for stochastic processeswith applications to guidance (New York: Interscience, 1968).
  3. [3] A.W. Oppenheim & R.W. Schafer, Digital signal processing(Englewood Cliffs, NJ: Prentice-Hall, 1975).
  4. [4] E.C. Ifeachor & B.W. Jervis, Digital signal processing: Apractical approach (Wokingham: Addison-Wesley, 1993).
  5. [5] S.W. Smith, The scientist and engineer’s guide to digital signalprocessing (San Diego: California Technical Publishing, 1999).
  6. [6] D.L. Alspach & H.W. Sorenson, Nonlinear Bayesian estima-tion using Gaussian sum approximations, IEEE Trans. onAutomatic Control, 17(4), 1972, 439–448. doi:10.1109/TAC.1972.1100034
  7. [7] S.I. Marcus, Algebraic and geometric methods in nonlinearfiltering, SIAM Journal of Control and Optimization, 22, 1984,817–844. doi:10.1137/0322052
  8. [8] M.R. James, Asymptotic nonlinear filtering and large deviationswith application to observer design, doctoral diss., Universityof Maryland, 1988.
  9. [9] J. Hruˇs´ak & M. ˇStork, On equivalence relations in stochasticand non-stochastic signal filtering, Proc. IEEE Int. Conf. onApplied Electronics, Pilsen, Czech Republic, 2001, 108–113.
  10. [10] J. Hruˇs´ak & V. ˇCern´y, Non-linear and signal energy optimalasymptotic filter design, Journal of Systemics, Cybernetics andInformatics, 1(5), 2003, 55–62.
  11. [11] V. ˇCern´y & J. Hruˇs´ak, Non-linear observer design methodbased on dissipation normal form, Kybernetika, 41(1), 2005,59–74.
  12. [12] D.G. Luenberger, An introduction to observers, IEEE Trans.Automatic Control, 16(6), 1971, 596–602. doi:10.1109/TAC.1971.1099826
  13. [13] R.E. Kalman & J.E. Bertram, Control system analysis anddesign via the second method of Lyapunov: I. Continuous-time systems; II. Discrete-time systems, Journal of BasicEngineering (ASME), 82(D), 1960, 371–393, 394–400.
  14. [14] J. Hruˇs´ak, Anwendung der ¨Aquivalenz bei Stabilit¨atspr¨ufung,Tagung ¨uber die Regelungstheorie, Mathematisches Forschung-sinstitut, Oberwollfach, Germany, 1969.
  15. [15] P. Penfield, S. Spence, & S. Dunker, Tellegen’s theorem andelectrical networks (Cambridge, MA: MIT Press, 1970).
  16. [16] J. Hruˇs´ak, M. ˇStork, & D. P´anek, Discrete-time Telegenprinciple and filter structure with reduced error sensitivity,Proc. IEEE Int. Conf. on Applied Electronics, Pilsen, CzechRepublic, 2004, 83–86.
  17. [17] H.R. Schwarz, Ein Verfahren zur Stabilit¨atsfrage bei MatrizenEigenwertproblemen, Zeitschrift f¨ur Angewandte Mathematikund Physik, 7, 1956, 473–500. doi:10.1007/BF01601178
  18. [18] M.R. Patel, F. Fallside, & P.C. Parks, A new proof of the Routhand Hurwitz criterion by the second method of Lyapunovwith application to optimum transfer functions, IEEE Trans.Automatic Control, 9, 1963, 319–322.
  19. [19] M.S. Ghausi & K.R. Laker, Modern filter design (EnglewoodCliffs, NJ: Prentice-Hall, 1981).
  20. [20] J. Hruˇs´ak & D. P´anek, Signal energy conservation and latticestructure of asymptotic filters, Proc. IEEE Int. Conf. onApplied Electronics, Pilsen, Czech Republic, 2003, 96–99.
  21. [21] H. Kimura, Generalized Schwarz form and lattice-ladder real-izations of digital filters, IEEE Trans. on Circuits and Systems,32(11), 1985, 1130–1139. doi:10.1109/TCS.1985.1085647
  22. [22] V. ˇCern´y & J. Hruˇs´ak, On some new similarities betweennonlinear observer and filter design, Proc. 6th IFAC Symp. onNonlinear Control Systems, 2, Stuttgart, 2004, 609–614.
  23. [23] V. ˇCern´y & J. Hruˇs´ak, On some new facts in comparingfrequency domain, optimal and asymptotic filtering, Proc. 6thIASTED Int. Conf. on Control and Applications, Los Angeles,2004, 23–28.

Important Links:

Go Back