C.Y. Lu, J.S.H. Tsai, and T.J. Su
[1] K.M. Nagpal & P.P. Khargonekar, Filtering and smoothing inan H∞ setting, IEEE Trans. on Automatic Control, 36, 1991,152–166. doi:10.1109/9.67291 [2] U. Shaked, H∞ minimum error state estimation of linearstationary processes, IEEE Trans. on Automatic Control, 35,1990, 554–558. doi:10.1109/9.53521 [3] U. Shaked & Y. Theodor, H∞-optimal estimation: A tutorialreview, Proc. 31th IEEE Conf. Decision Control, Tucson, AZ,1992, 2278–2286. doi:10.1109/CDC.1992.371384 [4] C.E. de Souza, L. Xie, & Y. Wang, H∞ filtering for a class ofuncertain nonlinear system, System and Control Letters, 20,1993, 419–426. doi:10.1016/0167-6911(93)90103-D [5] M. Fu, C.E. de Souza, & L. Xie, H∞ estimation for uncertain systems, International Journal of Robust and NonlinearControl, 2, 1992, 87–105. doi:10.1002/rnc.4590020202 [6] Z. Wang & F. Yang, Robust filtering for uncertain linearsystems with delayed states and output, IEEE Trans. onCircuits & Systems, I: Fundamental Theory and Applications,49, 2002, 125–130. doi:10.1109/81.974887 [7] C.E. de Souza, R.M. Palhares, & P.L. Dias Peres, RobustH∞ filter design for uncertain linear systems with multipletime-varying state delays, IEEE Trans. on Signal Processing,49, 2001, 569–576. doi:10.1109/78.905882 [8] S.-I. Niculescu, Delay effects on stability: A robust controlapproach (London: Springer-Verlag, 2001). [9] T.J. Su & C.G. Huang, Robust stability of delay-dependence forlinear uncertain systems, IEEE Trans. on Automatic Control,37, 1992, 1656–1659. doi:10.1109/9.256406 [10] J.K. Hale & S.M. Verduyn Lunel, Introduction to functionaldifferential equations (New York: Springer-Verlag, 1993). [11] M.S. Mahmoud, Robust control and filtering for time-delaysystems (New York: Marcel Dekker, 2000). [12] C.Y. Lu, J.S.H. Tsai, & T.J. Su, On improved delay-dependentrobust stability criteria for uncertain systems with multiple-state delays, IEEE Trans. on Circuits and Systems, I: Funda-mental Theory and Applications, 49, 2002 253–256. doi:10.1109/81.983874 [13] A.W. Pila, U. Shaked, & C.E. de Souza, H∞ filtering forcontinuous-time linear systems with delay, IEEE Trans. onAutomatic Control, 44, 1999, 1412–1417. doi:10.1109/9.774112 [14] Z. Wang, B. Huang, & H. Unbehauen, Robust H∞ observerdesign of linear time-delay systems with parametric uncertainty,System and Control Letters, 42, 2001, 303–312. doi:10.1016/S0167-6911(00)00100-6 [15] J.-J. Yan, J. Sheng-Hong Tsai, & F.-C. Kung, Robust stabilityanalysis of interval systems with multiple time-varying delays:Evolutionary programming approach, International Journalof the Franklin Institute, 336, 1999, 711–720. doi:10.1016/S0016-0032(98)00048-9 [16] P.-L. Liu & T.-J. Su, Robust stability of interval time-delaysystems with delay-dependence, System and Control Letters,33, 1998, 231–239. doi:10.1016/S0167-6911(97)00098-4 [17] J. Rohn, An algorithm for checking stability of symmetricinterval matrices, IEEE Trans. on Automatic Control, 41,1996, 133–136. doi:10.1109/9.481618 [18] M. Mansour, Robust stability of interval matrices, Proc. 28thConf. on Decision and Control, Tampa, FL, 1989, 46–51. doi:10.1109/CDC.1989.70071 [19] X.X. Liao & X. Mao, Exponential stability of stochasticdelay interval systems, System and Control Letters, 40, 2000,171–181. doi:10.1016/S0167-6911(00)00021-9 [20] X. Mao & L. Shaikhet, Delay dependent stability criteriafor stochastic differential delay equations with Markovianswitching, Stability and Control: Theory and Applications, 3,2000, 87–101. [21] S. Boyd, L. EI Ghaoui, E. Feron, & V. BalaKrishnan, Linearmatrix inequalities in systems and control theory (New York,Philadelphia, PA: SIAM Studies in Applied Mathematics,1994). [22] J.H. Lee, S.W. Kim, & W.H. Kwon, Memoryless H∞ con-trollers for state delayed systems, IEEE Trans. on AutomaticControl, 39, 1994, 159–162. doi:10.1109/9.273356 [23] X. Li & M. Fu, A linear matrix inequality approach to robustH∞ filtering, IEEE Trans. on Signal Processing, 45, 1997,2338–2350. doi:10.1109/78.564176
Important Links:
Go Back