M.F. Selekwa and E.G. Collins, Jr
[1] D. McFarlane & K. Glover, A loop shaping design procedureusing H∞ synthesis, IEEE Trans. Automatic Control, 37 (6),1992, 759–769. doi:10.1109/9.256330 [2] M. Vidyasagar & H. Kimura, Robust controllers for uncertainlinear multivariable systems, Automatica, 22 (1), 1986, 85–94. doi:10.1016/0005-1098(86)90107-X [3] K. Glover & D. MacFarlane, Robust stabilization of nor-malized coprime factor plant descriptions with H∞-boundeduncertainity, IEEE Trans. Automatic Control, 34(8), 1989,821–830. doi:10.1109/9.29424 [4] M.G. Savonov, A.J. Laub, & G.L. Hartmann, Feedback proper-ties of multivariable systems: The role and the use of the returndifference matrix, IEEE Trans. Automatic Control, AC-26 (1),1981, 47–65. doi:10.1109/TAC.1981.1102566 [5] J.C. Doyle & G. Stein, Multivariable feedback design: Conceptsfor a classical/modern sysnthesis, IEEE Trans. AutomaticControl, AC-26 (1), 1981, 1–16. [6] G. Papageorgiou & K. Glover, A systematic procedure fordesigning non-diagonal weights to facilitate H∞ loop shap-ing, Proc. IEEE Conf. on Decision and Control, San Diego,December 1997, 2127–2132. doi:10.1109/CDC.1997.657081 [7] G. Papageorgiou, Robust control system design: H∞ loopshaping and aerospace applications, doctoral diss., DarwinCollege, Cambridge, 1998. [8] I.S. Postlethwaite, M.C. Tsai, & D.-W. Gu, Weighting functionselection in H∞ design, Proc. 11th IFAC World Congress, Vol.5, Tallin, Estonia, June 1990, 104–109.55 [9] M.A. Franchek, Enforcing time domain specifications throughthe robust performance and H∞ optimization problem, Proc.American Control Conf., Baltimore, June 1994, 1513–1517. doi:10.1109/ACC.1994.752320 [10] M.A. Franchek, Selecting performance weights for the µ andH∞ synthesis methods for SISO regulating systems, Trans.ASME, 118, March 1996, 126–131. [11] J. Hu, C. Bohn, & H.R. Wu, Practical H∞ weighting functionsand their application to real-time control of a pilot plant, Proc.American Control Conf., San Diego, June 1999, 920–924. [12] J. Hu, C. Bohn, & H.R. Wu, Systematic H∞ weighting functionselection and its application to real-time control of verticaltake-off aircraft, Control Engineering Practice, 8, 2000, 241–252. doi:10.1016/S0967-0661(99)00157-4 [13] M.F. Selekwa & E.G. Collins, Jr., H2 optimal reduced ordercontrol design using a fuzzy logic methodology with bounds onsystem variances, IEEE Trans. Control Systems Technology,11(1), 2003, 153–156. doi:10.1109/TCST.2002.806438 [14] E.G. Collins, Jr. & M.F. Selekwa, A fuzzy logic approach toLQG design with variance constraints, IEEE Trans. ControlSystems Technology, 10 (1), 2003, 32–42. doi:10.1109/87.974336 [15] M. Green & D.J. Limebeer, Linear robust control (EnglewoodCliffs, NJ: Prentice-Hall, 1995). [16] M.F. Selekwa, Fuzzy logic approaches for the design of multi-objective control systems using H2 and H∞ methods, doctoraldiss., Florida A&M University, Tallahasse, FL, 2001. [17] S.G. Nash & A. Sofer, Linear and nonlinear programming(New York: McGraw Hill, 1996). [18] L. Vandenberghe & S. Boyd, Semidefinite Programming, SIAMReview, 38 (1), 1996, 49–95. doi:10.1137/1038003 [19] M.F. Selekwa & E.G. Collins, Jr., Solution of inexplicit andunderdetermined nonlinear systems using fuzzy logic, Proc.2002 Amer. Cont. Conf., Anchorage, AL, May 2002, 3259–3263. [20] N. Gulley & J.S. Jang, Fuzzy Logic Toolbox user’s guide(Natick, MA: Mathworks Inc., 1995). [21] Y.-Y. Cao & J. Lam, On simultaneous H∞ control and strongH∞ stabilization, Automatica, 36(6), 2000, 859–865. doi:10.1016/S0005-1098(99)00212-5 [22] S. Skogestad & I. Postlethwaite, Multivariable feedback control(New York: John Wiley, 1996).
Important Links:
Go Back