AUTO-TUNING OF ADAPTIVE CONTROL WITH DEAD ZONE

M. Kosaka and H. Shibata

References

  1. [1] Z. Ahmad & A. Guez, Auto-tuning of parameters in estimationand adaptive control of robots with weaker PE conditions,IEEE Trans. on Automatic Control, 42(12), 1997, 1726–1730. doi:10.1109/9.650027
  2. [2] E. Poulin, A. Pomerleau, A. Desbiens, & D. Hodouin, Devel-opment and evaluation of an auto-tuning and adaptive PIDController, Automatica, 32(1), 1996, 71–82. doi:10.1016/0005-1098(95)00105-0
  3. [3] M. Lundh & K.J. Astrom, Automatic initialization of a robustself-tuning controller, Automatica, 30(11), 1994, 1649–1662. doi:10.1016/0005-1098(94)90069-8
  4. [4] C. Samson, Stability analysis of adaptively controlled systemssubject to bounded disturbances, Automatica, 19, 1983, 81–86. doi:10.1016/0005-1098(83)90077-8
  5. [5] M. Kosaka, F. Kimura, & H. Shibata, Adaptive law withvariable dead zone width using a priori data, Trans. Societyof Instrument and Control Engineers, 34(8), 1998, 1025–1032(in Japanese).
  6. [6] M. Kosaka, F. Kimura, & H. Shibata, An adaptive control re-ferring to the desired complementary sensitive function, Trans.Institute of Systems, Control and Information Engineers, 9(11),1996, 485–494 (in Japanese).
  7. [7] J.C. Doyle, K. Glover, P.P. Khargonekar, & B.A. Francis, Statespace solutions to standard H2 and H∞ control problems,IEEE Trans. Automatic Control, AC-34, 1989, 831–847. doi:10.1109/9.29425
  8. [8] P.C. Parks, A new proof of the Routh-Hurwitz stability criterionusing the second method of Lyapunov, Mathematical Proc.Cambridge Philosophical Society, 58, 1962, 694–702.
  9. [9] J.S. Shamma, The necessity of the small-gain theorem for time-varying and nonlinear systems, IEEE Trans. on AutomaticControl, AC-36, 1991, 1138–1147. doi:10.1109/9.90227

Important Links:

Go Back