W. Greblicki
[1] L. Ljung, System identification: Theory for the user (Englewood Cliffs, NI: Prentice-Hall, 1987). [2] T. Söderström & P. Stoica, System identification (New York:Prentice-Hall, 1989). [3] K.S. Narendra & P.G. Gallman, An iterative method foridentification of nonlinear systems using a Hammerstein model,IEEE Trans. on Automatic Control, AC-11, 1966, 546–550. doi:10.1109/TAC.1966.1098387 [4] S.A. Billings & S.Y. Fakhouri, Theory of separable processeswith applications to the identification of nonlinear systems,IEE Proc., 125 (9), 1978, 1051–1058. [5] J.S. Bendat, Nonlinear system analysis and identification fromrandom data (New York: Wiley, 1990). [6] G.B. Giannakis & E. Serpendin, A bibliography on nonlinearsystem identification, Signal Processing, 81, 2001, 533–580. doi:10.1016/S0165-1684(00)00231-0 [7] W. Greblicki & M. Pawlak, Identification of discrete Hammerstein systems using kernel regression estimates, IEEE Trans.on Automatic Control, AC-31, 1986, 74–77. doi:10.1109/TAC.1986.1104096 [8] W. Greblicki & M. Pawlak, Nonparametric identification ofHammerstein systems, IEEE Trans. on Information Theory,IT-35 (2), 1989, 409–418. doi:10.1109/18.32135 [9] W. Greblicki & M. Pawlak, Recursive identification of Hammerstein systems, Journal of the Franklin Institute, 326 (4), 1989, 461–481. doi:10.1016/0016-0032(89)90045-8 [10] W. Greblicki & M. Pawlak, Nonparametric identification of acascade nonlinear time series system, Signal Processing, 22,1991, 61–75. doi:10.1016/0165-1684(91)90029-I [11] W. Greblicki, Nonparametric orthogonal series identificationof Hammerstein systems, International Journal of SystemsScience, 20 (12), 1989, 2355–2367. doi:10.1080/00207728908910318 [12] W. Greblicki, Nonlinearity estimation in Hammerstein systems based on ordered observations, IEEE Trans. on Signal Processing, 44 (5), 1996, 1224–1233. doi:10.1109/78.502334 [13] Z. Hasiewicz, Hammerstein system identification by the Haarmultiresolution approximation, International Journal of Adaptive Control and Signal Processing, 13, 1999, 691–717. doi:10.1002/(SICI)1099-1115(199912)13:8<691::AID-ACS591>3.0.CO;2-7 [14] Z. Hasiewicz, Non-parametric estimation of non-linearity in acascade time-series system by multiscale approximation, SignalProcessing, 81, 2001, 791–807. doi:10.1016/S0165-1684(00)00247-4 [15] A. Krzyzak, An estimation of a class of nonlinear systems bythe kernel regression estimate, IEEE Trans. on InformationTheory, 36 (1), 1990, 141–152. doi:10.1109/18.50380 [16] A. Krzyzak, Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation, IEEE Trans. on Information Theory, 38 (4), 1992, 1323–1338. doi:10.1109/18.144711 [17] M. Pawlak, On the series expansion approach to the identification of Hammerstein system, IEEE Trans. on Automatic Control, AC-36, 1991, 763–767. doi:10.1109/9.86954 [18] M. Pawlak & Z. Hasiewicz, Nonlinear system identification bythe Haar multiresolution analysis, IEEE Trans. on Circuitsand Systems 1: Fundamental Theory and Applications, 45 (9),1998, 945–961. doi:10.1109/81.721260 [19] Z.Q. Lang, Controller design oriented model identificationmethod for Hammerstein system, Automatica, 39 (3), 1993,767–771. doi:10.1016/0005-1098(93)90072-2 [20] Z.Q. Lang, A nonparametric polynomial identification algorithm for the Hammerstein system, IEEE Trans. on Automatic Control, 42 (10), 1997, 1435–1441. doi:10.1109/9.633834 [21] M.T. Wasan, Stochastic approximation (Cambridge: CambridgeUniversity Press, 1969). [22] M.P. Wand & M.C. Jones, Kernel smoothing (London: Chapman & Hall, 1995). [23] L. Györfi, M. Kohler, A. Krzyzak, & H. Walk, A distribution-free theory of nonparametric regression (New York: Springer, 2002). [24] M. Rosenblatt, Remarks on some nonparametric estimates of adensity function, Annals of Mathematical Statistics, 27, 1956,832–837. doi:10.1214/aoms/1177728190 [25] V. Fabian, Stochastic approximation of minima with improvedasymptotic speed, Annals of Mathematical Statistics, 38, 1967,191–200. doi:10.1214/aoms/1177699070 [26] R.L. Wheeden & A. Zygmund, Measure and integral (New York: Dekker, 1977).
Important Links:
Go Back