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Abstract

With the high proportion of renewable energy connected to the grid,
the non-stationarity and multi-scale characteristics of power load are
becoming increasingly prominent, which puts higher demands on
prediction accuracy. Therefore, a multi-scale power load forecast-
ing model combining an adaptive graph convolutional network and
a multi-head attention mechanism was proposed. The core innova-
tion lies in the fact that adaptive graph convolutional networks dy-
namically evolve the spatial dependency relationships between nodes
through learnable adjacency matrices, breaking through the limita-
tions of traditional graph convolutional networks that rely on fixed
topologies. The multi-head attention mechanism extracts multi-scale
temporal features in parallel from the load sequence. The two work
together to achieve deep integration of spatiotemporal features. Ex-
periments on the ISO-NE and BuildingsBench datasets show that
the model maintains the highest accuracy in both short-term and
medium to long-term predictions, with root mean square error, mean
absolute error, and mean absolute percentage error of 46.88MW,
34.29MW, and 5.13%, respectively. Its anti-interference ability and
inference speed are also superior to mainstream comparison mod-
els. The results indicate that the MS-AGCN-MHA model can ef-
fectively improve the robustness and accuracy of load forecasting in
complex power grid environments, providing reliable technical sup-

port for real-time scheduling of smart grids.
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1. Overview

In recent years, the large-scale integration of new energy
represented by wind power and photovoltaics, as well as the
diversification of electricity load structures, have jointly
promoted the ”dual high” characteristics of a high propor-
tion of renewable energy and a high proportion of power
electronic equipment in the power system. As of the end of
2024, the proportion of wind and solar installed capacity
in China has reached 42.0%, and the proportion of power
generation has exceeded 18%, resulting in a significant in-
crease in the non stationarity and multi-scale volatility of
load sequences, which has led to a shift in load forecasting
(LF) from single time series modeling to comprehensive
modeling that integrates multidimensional features. The
high proportion of distributed energy and extreme weather
events further increases the uncertainty of load fluctua-
tions, bringing greater pressure to the safe operation and
economic dispatch of the power grid [1]-[3].

Deep learning (DL) technology is widely used in LF tasks
due to its powerful feature extraction and pattern recog-
nition capabilities, and has demonstrated superior perfor-
mance in a variety of scenarios. To increase the precision of
power LF, Pentsos et al. suggested a novel optimized hy-
brid model integrating Long Short-Term Memory (LSTM)
networks and Transformers. By leveraging the strengths
of both architectures and incorporating geographical and
user behavior factors, the model achieves reliable electric-
ity load predictions [4]. To increase the precision of short-
term power demand forecasting, Duan et al. suggested a
deep neural network model that combines deep LSTM net-
works, threshold periodic units, and boosting techniques.
This method enhanced model fusion through the Boost-
ing algorithm, significantly improving the operational effi-
ciency and reliability of power systems [5]. To increase the
precision of power load data prediction, Yang et al. sug-
gested a prediction model built on an enhanced extreme
learning machine. This method simplified the model struc-
ture and reduced training errors by introducing the Pin-
ball Huber robust loss function and genetic algorithm op-
timization [6]. To increase the grid integration efficiency
of renewable energy power generation, Banik et al. sug-
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gested a stacked ensemble model that combined extreme
gradient boosting and random forests. This method im-
proved the long-term and short-term prediction accuracy
of power load by predicting power load and integrating
environment-dependent data [7].

In terms of spatial information utilization, the graph
convolutional network (GCN) has attracted attention for
its ability to model spatial relationships between nodes us-
ing power grid topology. Wu et al. proposed a prediction
model based on GCN and gated recurrent units to im-
prove the accuracy of multi-area power LF. By construct-
ing an adjacency matrix to analyze spatiotemporal cor-
relations, they achieved superior prediction performance
[8]. To increase the precision of short-term LF, Zhang et
al. suggested a DL model that combines GCN and tree-
like neural models. They significantly improved predict-
ing performance by extracting geographical information
from sample load data using GCN [9]. In addition, the in-
troduction of attention mechanisms (AMs) improves long-
range dependency capture capabilities and shows potential
in terms of feature extraction diversity [10]. To enhance
short-term power LF performance, Feng et al. suggested
a hybrid model that combined bidirectional LSTM net-
works, temporal convolutional networks, and AMs. This
method identified and weighted key information in multi-
dimensional time series through AMs, achieving more ac-
curate short-term LF [11]. Jiang et al. proposed a new
dynamic time-dependent model to improve the accuracy of
short-term LF. This method achieved more effective multi-
step time-dependent learning by capturing similarities be-
tween different timestamps through the multi-head AM
(MHA) [12].

The research paradigm of power load forecasting is shift-
ing from a single model structure innovation to collabo-
rative optimization of feature engineering, loss function,
and model architecture. This transformation is due to the
higher requirements placed on prediction systems by the
high proportion of renewable energy grid integration and
frequent extreme weather events. Traditional feature en-
gineering often directly uses meteorological observations,
while the latest research in 2025 emphasizes the explo-
ration of deep dynamic correlations between meteorologi-
cal factors and loads. For example, Pu et al. used the max-
imum information coefficient to assign weights to meteo-
rological variables in different weather scenarios, and then
combined them with a gate mechanism and a multi-layer
self-attention network to effectively capture their global
dependence on load [13]. Meanwhile, in order to enhance
the robustness of the model under extreme fluctuations,
the design of the loss function is no longer limited to mean
square error. Quantile regression and uncertainty-based
loss functions have become cutting-edge directions. Re-
search and practice have shown that quantile regression
models can effectively construct load prediction intervals,
providing a basis for risk assessment [14].

Although the aforementioned methods have made
progress in prediction accuracy, feature extraction, and
spatiotemporal modeling, they still exhibit limitations in
handling dynamic spatial topology changes, integrating

spatiotemporal multiscale features, and achieving model
generalization capabilities. This is particularly evident
when addressing scenarios with high renewable energy pen-
etration and significant load fluctuations. To address these
challenges, this study proposes a multi-scale power load
forecasting model integrating Adaptive Graph Convolu-
tional Networks (AGCN) and Multi-Heterogeneous Anal-
ysis (MHA), termed MS-AGCN-MHA. By adaptively con-
structing the spatial correlation matrix of power system
nodes, it integrates multi-order topological information to
enhance spatial feature representation capabilities. Addi-
tionally, it utilizes the MHA mechanism to capture key
information across different time scales in the temporal
dimension, achieving deep fusion modeling of load spa-
tiotemporal characteristics. The research aims to improve
the accuracy and stability of multiscale load forecasting,
providing more reliable decision-making support for intel-
ligent dispatch in complex power systems. The innova-
tion lies in simultaneously achieving dynamic spatial topol-
ogy updates, multi-scale temporal dependency modeling,
and frequency-domain feature integration. This approach
enhances prediction performance in complex power sys-
tem environments, providing efficient and reliable techni-
cal support for secure dispatch and scientific planning in
smart grids.

2. Methods and Materials

2.1 Prediction Algorithm Based on AGCN and
MHA

To address the multi-scale characteristics of power load
data in terms of time and space, this study proposes an
AGCN-MHA algorithm. Fig. 1 depicts the AGCN-MHA
algorithm’s fundamental structure.
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Figure 1. AGCN-MHA Prediction Algorithm Diagram

In Fig. 1, the input end first receives power load sequence
data from multiple regions. The original load sequences
undergo local feature encoding through the convolutional
neural network feature extraction unit. Position encoding
and time encoding are introduced at this stage to enhance
the model’s ability to represent spatiotemporal sequences.
Next, the encoded features are sent to the Fast Fourier
Transform (FFT) module for frequency domain transfor-
mation to extract multi-scale information of the load signal
in the frequency domain. To effectively integrate frequency
domain and time domain information, the significant fre-
quency domain components extracted by FFT are studied



as independent feature vectors, and they are concatenated
with the spatial enhanced features output by AGCN in the
feature dimension to form the input of the MHA module.
On this basis, each attention head in the MHA mechanism
generates its key and value matrices from a composite fea-
ture that combines spatiotemporal and frequency-domain
information when calculating temporal dependencies. This
enables the model to simultaneously balance spatiotem-
poral context and frequency domain characteristics when
capturing temporal dependencies, thereby achieving deep
adaptive fusion of frequency domain spatiotemporal fea-
tures. Subsequently, the core component AGCN dynam-
ically characterizes the correlations between power load
nodes through a learnable adjacency matrix, overcoming
the limitations of traditional GCNs that rely on static adja-
cency matrices. This enables adaptive adjustment of node
relationship weights across different prediction stages. For
temporal modeling, MHA captures long-range dependen-
cies in time series, enabling the model to focus on distinct
temporal patterns across different subspaces. To mitigate
gradient vanishing, the research introduces residual unit
structures between the GCN and attention network, while
applying SoftMax normalization after each layer to stabi-
lize feature distributions.

In addition, AGCN and MHA mechanisms achieve deep
fusion through a cascading approach of ”spatial priority,
temporal successor”. The model first uses AGCN to dy-
namically aggregate the spatial features of each power node
on each time slice, generating a spatially enhanced node
feature sequence. Subsequently, the MHA mechanism acts
on the temporal dimension of the sequence, capturing long-
term dependencies by calculating attention weights across
time steps. This ”space-time” alternating processing mode
can stack multiple layers in the network, allowing deep
AGCOCN to further optimize spatial relationships based on
the temporal context provided by MHA, while deep MHA
can mine complex temporal patterns based on more accu-
rate spatial features, thereby achieving collaborative evo-
lution and joint modeling of spatiotemporal features. Fi-
nally, a multi-layer perceptron is used to perform regres-
sion output for the predicted values. Meanwhile, the learn-
able dynamic adjacency matrix does not directly partici-
pate as a parameter in the calculation of queries, keys,
and values in MHA. The spatially enhanced node feature
sequence output by AGCN is the direct input for MHA’s
time attention calculation. An optimized adjacency matrix
can aggregate more relevant spatial neighbor information,
resulting in feature sequences with less noise and clearer
spatial semantics. When the MHA mechanism performs
operations on the high-quality sequence, its calculated at-
tention weights can more accurately focus on the truly crit-
ical temporal patterns, rather than being misled by local
spatial noise. Fig. 2 depicts the AGCN module’s basic
structure.

In Fig. 2, first, the input power load data goes through a
feature extraction module, which converts the time series
data into node feature representations suitable for graph
convolution operations. Next, AGCN calculates the simi-
larity between node embedding vectors to generate a learn-
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Figure 2. AGCN Basic Structure Diagram

able adjacency matrix that reflects the spatial relation-
ships between nodes [15]. The node features are aggre-
gated using graph convolution operations, and the neigh-
borhood range of feature aggregation is dynamically de-
termined by a learnable adjacency matrix rather than re-
lying on a predefined topological structure [16]-[17]. The
model performs deep mining of local spatiotemporal infor-
mation through feature-weighted aggregation of neighbor-
ing nodes, while also taking into account global features
at different scales. Finally, after undergoing multi-layer
graph convolution and nonlinear activation function (AF)
processing, the network outputs a high-dimensional repre-
sentation that integrates multi-scale features, which serves
as input for subsequent prediction modules. The adap-
tive adjacency matrix is dynamically generated by calcu-
lating similarities among node features, with its core be-
ing a learnable transformation matrix, as shown in Equa-
tion (1).

Aq) = softmax(ReLU(X)Way X()T)) (1)

In Equation (1), A(;) denotes the adaptive adjacency ma-
trix of layer [, reflecting the dynamic spatial dependency
strength between nodes. softmax represents the normal-
ization operation, ensuring the sum of weights in each row
of the adjacency matrix equals 1. ReLU denotes the rec-
tified linear unit activation function. X represents the
feature matrix of input nodes in layer I. Wy denotes
the learnable weight matrix constructed from the adja-
cency matrix of layer [, whose function is to map node
features onto a latent space where similarity can be effi-
ciently computed. The study employs the Xavier uniform
distribution strategy to initialize the learnable weight ma-
trix. This strategy automatically adjusts the initialization
range based on the number of input and output neurons
in the layer, helping maintain stable gradient flow during
early training and accelerating model convergence. Dur-
ing the model training process, the learnable weight matrix
is optimized along with all other model parameters using
the backpropagation algorithm. Its gradient is calculated
based on the total loss function and updated through the
Adam optimizer. The update frequency of this weight ma-
trix is consistent with the main network of the model, that
is, it is updated once per training batch. The expression
for the convolution operation is shown in Equation (2).

Hyry = o(AgyHpWay) (2)



In Equation (2), H(;41) denotes the FM of the [ + 1-th
layer nodes. o denotes the nonlinear AF. H ;) denotes the
FM of the [ — th layer nodes. W(; denotes the learnable
WM of the [ —th layer graph convolution, used to perform
a linear transformation on aggregated neighbor features.
Fig. 3 depicts the MHA module’s fundamental structure.
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Figure 3. Schematic Diagram of the MHA Mechanism

Fig. 3 illustrates the core workflow of the MHA mech-
anism in temporal feature modeling. First, the input
feature vector is parallelly mapped to multiple attention
heads. Each head generates three matrices—query, key,
and value—through independent linear transformations.
These matrices compute attention weights via dot products
and undergo SoftMax normalization, reflecting the correla-
tions between different time points in the sequence. Subse-
quently, each head performs a weighted summation of the
value vector based on these weights, extracting feature in-
formation from distinct subspaces. The concatenated out-
puts from all heads are then fused through a linear trans-
formation to form the final feature representation. This
enables the model to simultaneously capture multiple tem-
poral dependency patterns, enhancing its ability to model
long-range dependencies and complex temporal relation-
ships [18]. Furthermore, the multi-head attention mecha-
nism leverages parallel computation advantages, improving
computational efficiency and model expressiveness. The
MHA mechanism captures diverse temporal dependency
patterns by computing multiple attention heads in par-
allel. Its final output is obtained by concatenating and
linearly mapping the outputs from each attention head, as
shown in Equation (3).

MHA(X) = Concat(heady, heads, . .., headp,)Wo  (3)

In Equation (3), M HA(X) represents the final MHA out-
put. Concat represents concatenating the outputs of all
heads in the feature dimension. head), is the output of the
h — th attention head. Wy represents the linear mapping
WM. The calculation of headp, is shown in Equation (4).

heady, = Attention(Q - W,LQ, K-WEV-WY) (4

In Equation (4), @, K, and V represent the query, key, and
value matrices, respectively. W,? , W}f{ and W}L/ represent
the learnable projection matrices for the h — th attention
head, respectively.

2.2 Construction of a Multi-scale Power LF
Model Based on the AGCN-MHA Algorithm

After completing the construction based on the AGCN-
MHA algorithm, it is necessary to embed it into a complete
power LF framework to achieve end-to-end processing from
raw data to prediction results. Based on this, the study
designs a multi-scale power LF model, MS-AGCN-MHA,
based on the AGCN-MHA algorithm. Its overall structure
is shown in Fig. 4.
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Figure 4. MS-AGCN-MHA Model Architecture

As shown in Figure 4, the MS-AGCN-MHA model first
integrates historical load data with multi-domain exter-
nal factors such as temperature and date type through
data acquisition. It then constructs a standardized spa-
tiotemporal dataset via data preprocessing and denoising.
Subsequently, it enters the AGCN-MHA multi-scale spa-
tiotemporal feature joint extraction layer, where it learns
real-time spatial dependencies between grid nodes through
a dynamic adjacency matrix while concurrently extracting
features at different temporal scales via the MHA mech-
anism. During training, an optimizer with early stopping
is employed for parameter iteration. The graph convolu-
tion order and attention head weights are dynamically ad-
justed based on the validation set. A multi-scale composite
loss function was developed to synchronously optimize the
accuracy of all prediction steps for multi-scale prediction
tasks. The loss function is the weighted sum of losses over
multiple prediction time scales, defined as equation (5).

Giotat = SN - LT, YD) 41 [ © |3 (5)
tes

In equation (5), Ciotal represents the total loss function
value; \; represents the adjustable weight coefficient cor-
responding to the time scale t; Y, and Y, respectively repre-
sent the predicted values of the model and the actual load
values on the time scale t; ¢ (Yt, Y;) represents the basic loss
function at time scale t; ) represents the regularization co-
efficient; © represents the set of all trainable parameters
in the model. Through this composite loss function, the
model is forced to learn and optimize the predictive ability
of all target time scales simultaneously during the training
process, rather than focusing solely on a single scale, ensur-
ing the balance and robustness of its multi-scale predictive
performance. It guarantees that the model performs at its
best on the validation set by continuously modifying pa-
rameters to enhance prediction performance and perform-
ing real-time evaluation of model efficacy during training.



After training is complete, the model weights with the best
performance are saved, and the trained model is ultimately
applied to the task of predicting power load, producing
multi-scale, accurate load prediction results. Fig. 5 illus-
trates the power data preparation procedure in detail.
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Figure 5. Power Load Dataset Preprocessing Process

Fig. 5 shows that the process primarily consists of four
steps: data collection, data cleaning, data format con-
version, and data normalization. First, the data collec-
tion module is responsible for collecting raw time-series
data on power load and related auxiliary information
from the power monitoring system, sensors, and histori-
cal databases. Next, the data cleaning module detects and
corrects missing values and outliers to ensure data integrity
and accuracy. In this study, the K-nearest neighbor impu-
tation method is used to fill in long-term missing data, as
shown in Equation (6) [19].

Ty = _167 (6)

In Equation (6), z; is the load value at time ¢ to be filled.
i represents the sample index. w; is the weight of the i
th nearest neighbor sample. k is the number of nearest
neighbors. x;, represents the load value at a similar time
t;. Next, the data format conversion module unifies multi-
source heterogeneous data into a standardized format for
subsequent modeling use. Finally, the data normalization
module performs scale adjustment and normalization pro-
cessing on the data to eliminate dimensional effects and im-
prove the stability and convergence speed of model train-
ing. Furthermore, the dataset must undergo noise reduc-
tion processing before entering the modeling stage. The
detailed steps are shown in Fig. 6.

In Fig. 6, data denoising primarily involves three stages:
feature extraction, noise identification, and noise filter-
ing. The purpose of performing feature extraction prior
to anomaly detection and filtering is as follows: raw power
load sequences are a mixture of signals and noise, making
it difficult to effectively distinguish legitimate load fluctua-
tions from genuine noise interference through direct manip-
ulation. By first extracting multidimensional features from
the raw data—including time-domain statistics, frequency-
domain components, and external factors like temperature
and date—a richer informational context is established.
This makes statistical deviations of outliers and noise pat-
terns more pronounced relative to normal load behavior.
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Figure 6. Basic Steps for Dataset Denoising (Feature Rep-
resentation, Feature Selection, and Data Denoising)

Following noise identification, multiple complementary fil-
tering techniques are applied to address different noise
types in power load data. Kalman filtering is suitable for
online processing of linear systems with Gaussian noise,
but it heavily relies on model accuracy and lacks the ca-
pability for handling nonlinear, non-stationary noise. Me-
dian filtering effectively removes spike-like anomalies with
simple computation, but may obscure genuine rapid load
variation details when suppressing high-frequency fluctua-
tions. Smoothing filters effectively mitigate high-frequency
random fluctuations but introduce phase lag and obscure
the true dynamic trends of the load. Wavelet transforms
achieve separation of noise and detail in non-stationary
signals through multi-resolution analysis, with their effec-
tiveness significantly influenced by the selection of basis
functions and thresholds. In addition, in the deep learning
stage, the research uses the reconstruction error detection
mechanism of autoencoders to remove abnormal data. For
an input feature vector, its reconstruction error is defined
as equation (7).

L= ||z — fdec(fenc(z))|l2 (7)

In Equation (7), £ displays the reconstruction error. x
displays the input feature vector. fgec represents the de-
coder function. fe,. represents the encoder function. In
research, autoencoders are not a complete replacement for
traditional filters, but rather serve as a supplementary and
enhancing step. Specifically, traditional filters excel at
handling noise with clear statistical patterns or specific
frequency bands, while deep models such as autoencoders
can detect and reconstruct complex nonlinear anomalies
that do not conform to normal load patterns by learning
the intrinsic manifold distribution of data. These anoma-
lies often exceed the effective processing range of tradi-
tional filters. By combining traditional methods for initial
denoising with deep learning for fine cleaning, a hybrid
strategy is implemented to maximize the retention of key
temporal information and comprehensively suppress noise
interference. The final result is a high-quality dataset that
retains key temporal information and has low noise in-
terference, providing reliable input for subsequent feature
selection and prediction models.



Table 1

Experimental Environment Configuration Table

Category | Device name Specifications Category Device name Specifications
GPU NVIDIA Tesla V100 32GB Operating system Ubuntu 18.04 LTS
Hardware CPU Intel Xeon Gold 5218 @ 2.3 GHz Software Programming language Python 3.8.10
Memory 128 GB DDR4 DL framework PyTorch 1.10.0
Storage 2TB SSD Visualization tools Matplotlib 3.4.3, Seaborn 0.11.2
- - Compute unified device architecture CUDA 11.3
3. Results layers exceeds 3, over-smoothing caused by deep convolu-

3.1 Experimental Environment and Parameter
Sensitivity Verification

Simulation tests are carried out to verify the MS-AGCN-
MHA model’s efficacy. Table 1 displays the experimental
environment’s precise configuration. The main training
parameters include a learning rate of 0.001, a batch size
of 64, an optimizer selection of Adam, and 100 training
rounds. The study used the Daubechies 4 wavelet basis
for 5-layer decomposition, and adaptive thresholding was
applied to the detail coefficients of each layer. The thresh-
old was determined according to the Donoho-Johnstone
criterion. The process noise covariance of Kalman filter-
ing is set to 0.01, and the observation noise covariance is
set to 0.1. This parameter combination has been verified
through grid search to have the best smoothing effect and
tracking ability on load data. All denoising hyperparame-
ters are determined through cross-validation and maintain
consistency across different datasets to ensure comparabil-
ity. The datasets used are the publicly available ISO-NE
power load dataset and the BuildingsBench dataset.

The study initially examines how the number of graph
convolution layers (GCLs) and attention heads affects
model performance using the experimental setup displayed
in Table 1. The evaluation metrics of mean absolute error
(MAE) and root mean squared error (RMSE) have been
chosen. The results are shown in Fig. 7.
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Figure 7. Sensitivity Analysis of the Number of Convolu-
tional Layers and the Number of Attention Heads

As shown in Fig. 7(a), as the number of layers increases
from 1 to 3, the Mean Absolute Error (MAE) decreases
from approximately 38.79 MW to 34.23 MW, while the
Root Mean Square Error (RMSE) decreases from 52.48
MW to 44.76 MW. This phenomenon stems from the dif-
ficulty of adequately modeling cross-regional power grid
topology using shallow networks. When the number of

tions leads to the loss of spatial details, causing the MAE
to rebound to 35.32 MW. This is because in deep GCN,
node features are iteratively aggregated through adjacency
matrices, resulting in similar feature representations of dif-
ferent nodes in the graph, thereby blurring the key spa-
tial details that originally helped distinguish different node
load patterns. As shown in Fig.7(b), when the attention
head rises from 2 to 8, the MAE reduces from 36.37 MW
to 32.82 MW, and the RMSE decreases from 48.03 MW
to 42.79 MW. But when the number of heads exceeds 8,
performance drops due to multi-head redundancy. Redun-
dancy is reflected in the fact that some attention heads
may learn highly similar or unimportant temporal pat-
terns, leading to inefficient utilization of model capacity
and increasing the risk of overfitting due to an increase in
parameters. The study uses independent linear projection
and final concatenation mapping operations in the MHA
mechanism to naturally differentiate and integrate the fo-
cus points of different heads. During the training process,
the model spontaneously drives different heads to focus
on different feature subspaces through gradient descent.
When the number of heads is 8, this mechanism achieves
the optimal balance between pattern diversity and param-
eter efficiency. Based on Figure 7, it can be seen that the
number of graph convolutional layers dominates the depth
and receptive field of spatial topology modeling, while the
number of attention heads determines the granularity and
diversity of temporal multi-scale feature decomposition.
Both have clear optimal values, and excessive depth or
quantity can impair generalization performance due to an
unreasonable increase in model capacity. For this purpose,
the study selected 3 layers of graph convolutional layers
and 8 attention heads as the core parameter configurations
of the model.

3.2 MS-AGCN-MHA Model Prediction Perfor-
mance Verification

To verify the contribution of each core module in the MS-
AGCN-MHA model to power LF performance, ablation
experiments are designed. The experimental variants are
set as follows: The adaptive adjacency matrix is removed
and replaced with a distance-based static adjacency ma-
trix (V1). Single-head attention is used to replace MHA
(V2). The fast Fourier transform module is removed (V3).
The residual connection between GCN and attention is
removed (V4). The complete model configuration is used
(V5). Mean absolute percentage error (MAPE) and RMSE
are used in the study as detection indicators. Fig. 8 dis-



plays the findings.
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Figure 8. Comparison of RMSE and MAPE for Different
Variants in Ablation Experiments Under Different Train-
ing Iterations

In Fig. 8(a), the complete model (V5) exhibits the lowest
RMSE across all training iterations and converges steadily,
reaching 38.98 MW at 100 iterations, demonstrating excel-
lent convergence and prediction accuracy. In contrast, the
V1 model, which removes the adaptive adjacency matrix,
has the highest error, remaining at 45.31 MW even at 100
iterations. This indicates that the static adjacency ma-
trix struggles to dynamically capture spatial dependencies
between nodes. The V4 model, which removes residual
connections, converges more slowly and has larger errors
during training. This implies that the residual structure
improves training stability and successfully reduces gradi-
ent vanishing. In Fig. 8(b), the MAPE of the complete
model V5 decreases from 7.96% to 6.06%, demonstrating
the best error control capability. V1 exhibits a high MAPE
in all rounds, with a maximum of 8.54%. This validates
the importance of the adaptive adjacency matrix for spatial
dependency modeling. In summary, each core module is in-
dispensable for improving model performance, promoting
the accuracy and robustness of LF through synergistic ef-
fects. On this basis, the study introduces three mainstream
LF models for comparison, namely spatio-temporal GCN
with attention (ST-GCN-Attention), multi-scale convolu-
tional neural network with MHA (MSCNN-MHA), and
GCN with gated recurrent unit fusion (GCN-GRU). Fig. 9
displays the findings.
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Figure 9. Comparison of R2 for Four Models Under Dif-
ferent Datasets

In Fig. 9(a), the MS-AGCN-MHA model outperforms
the comparison models at all time steps on the ISO-NE
power load dataset. The advantage is particularly evi-
dent in short-term predictions, achieving 0.854 and 0.837

at the 6-hour and 12-hour prediction steps, respectively.
MS-AGCN-MHA maintains the highest value of 0.769 at
48 hours, indicating its strong spatial-temporal feature fu-
sion capability. In Fig. 9(b), the R2 variation curve on
the BuildingsBench dataset shows that the R2 values of
all models are generally lower than those on the ISO-NE
dataset. When making short-term forecasts for 6h and
12h, MS-AGCN-MHA still performs best, achieving 0.843
and 0.826, respectively, but slightly lower than the ISO-
NE data. The gap becomes more pronounced in medium-
and long-term forecasts. This difference indicates that
in high-noise, heterogeneous building energy consumption
scenarios, the MS-AGCN-MHA model can effectively mit-
igate accuracy degradation. Meanwhile, the study tests
the anti-interference capabilities of the four models un-
der four interference scenarios: Gaussian noise interfer-
ence (SNR=10dB), pulse interference (5% data points),
load sudden changes ( £ 30% step), and extreme cold
wave events (-15°C continuous). The results are shown
in Fig. 10.
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As shown in Fig. 10(a), the MS-AGCN-MHA model ex-
hibits an RMSE of 47.96 MW under Gaussian noise inter-
ference, representing an average reduction of 8.70% com-
pared to other models and demonstrating its outstanding
robustness in noisy environments. When confronted with
non-stationary anomalies such as pulse disturbances and
load surges, the MS-AGCN-MHA model achieved RMSEs
of 49.10 MW and 51.31 MW, respectively. This indicates
that its adaptive adjacency matrix dynamically adjusts
spatial dependencies, effectively mitigating the impact of
anomalous data on predictions. Combined with Fig. 10(b),
MS-AGCN-MHA shows stable performance in delay con-
trol, with inference delays of 15.17ms, 15.52ms, 15.76ms,
and 15.95ms under four interference scenarios: Gaussian
noise interference, pulse interference, load mutation, and
extreme cold wave events. This delay level has signifi-
cant engineering application value: compared to the 2-4s
data refresh cycle of modern SCADA systems, the model
can complete more than 100 full network load predictions
in a single cycle, providing ample margin for scheduling
systems to achieve multi-scenario simulation and rolling
optimization. Finally, the study further introduced two
advanced models, GraphWaveNet and MTGNN, as com-
parative benchmarks to briefly investigate the effectiveness
of the methods. The results are shown in Table 2.



Table 2

A Comprehensive Performance Comparison of the Four Models

Metric ST-GCN-Attention | MSCNN-MHA | GCN-GRU | Graph Wave Net | MTGNN | MS-AGCN-MHA
RMSE (MW) 51.23 49.17 52.41 48.95 48.15 46.88

MAE (MW) 38.47 36.72 39.05 36.9 36.25 34.29

MAPE (%) 5.87 5.43 6.12 5.38 5.22 5.13

Peak Load Error (%) 7.18 6.83 7.52 6.71 6.45 6.13

Number of Parameters (M) 6.23 5.84 4.52 7.15 6.92 6.83

Training Time per Epoch (s) 134.76 120.34 109.88 145.83 142.17 139.62

GPU Memory Usage (GB) 7.48 6.81 5.36 7.86 7.64 7.23

Pearson Correlation Coefficient | 0.91 0.92 0.90 0.93 0.93 0.94

Table 3

Performance Comparison of Various Models in High Renewable Energy Penetration Scenarios

Model RMSE (MW) | MAE (MW) | MAPE (%) | Pearson correlation coefficient | CRPS | Pinball Loss (x10~2)
ST-GCN-Attention | 68.54 51.89 7.82 0.87 5.42 3.89
MSCNN-MHA 65.91 49.73 7.45 0.88 5.18 3.71
GCN-GRU 71.02 53.45 8.16 0.86 5.65 4.02
MS-AGCN-MHA 61.23 45.16 6.73 0.91 4.75 3.38

According to Table 2, compared with the two newly
added advanced benchmark models, the MS-AGCN-MHA
model still maintains a comprehensive advantage. Specif-
ically, GraphWaveNet and MTGNN demonstrate supe-
rior performance compared to traditional ST-GCN Atten-
tion and GCN-GRU models by introducing mechanisms
such as diffusion convolution and graph learning layers.
This validates the importance of dynamic graph struc-
ture learning in modern load forecasting. However, MS-
AGCN-MHA achieved finer spatiotemporal feature extrac-
tion through closer collaborative design between AGCN
and MHA. It achieved the lowest values in RMSE and
MAE, with 46.88MW and 34.29MW, respectively, indi-
cating its significant advantages in capturing the complex
spatiotemporal dependencies of power loads. Although the
parameter count of MS-AGCN-MHA is comparable to that
of MTGNN, its training time and video memory usage are
139.62s and 7.23GB, respectively, which are lower than
the comparison model, confirming the computational effi-
ciency of the model structure design. In addition, the peak
load error of the model is 6.13%, and the Pearson coeffi-
cient is 0.94, further verifying its adaptability to extreme
power grid conditions and trend capture accuracy, provid-
ing reliable support for safety warning in actual power grid
dispatch.

3.3 Generalization Ability Verification in High
Renewable Energy Penetration Scenarios

To validate the universality and robustness of the MS-
AGCN-MHA model in renewable energy-intensive systems,
the study supplemented the dataset obtained from the Eu-
ropean Grid Open Platform (ENTSO-E) for testing, with
a 48-hour prediction horizon. The results are shown in
Table 3.

According to Table 3, the MS-AGCN-MHA model still
maintains the best overall performance in complex scenar-
ios with high penetration of renewable energy. Its RMSE
and MAPE are 61.23 MW and 6.73%, respectively, both

significantly lower than the comparison model. The Pear-
son correlation coefficient reached 0.91, indicating that the
predicted curve is highly consistent with the actual trend
of net load changes. This is mainly due to the core mecha-
nism of the model: the AGCN module adaptively captures
the spatial correlations between grid nodes that undergo
drastic changes due to renewable energy injection through
a dynamic adjacency matrix. Meanwhile, the MHA mech-
anism can effectively decouple and learn non-stationary
temporal features caused by wind and solar fluctuations,
which are superimposed on traditional load patterns. In
contrast, the GCN-GRU model performs relatively poorly
due to its insufficient ability to capture spatiotemporal
dynamic changes; Although the ST-GCN Attention and
MSCNN-MHA models can partially cope, their fixed spa-
tial assumptions or single-scale temporal modeling meth-
ods limit their performance limits in strong fluctuation sce-
narios. MS-AGCN-MHA also performs the best in proba-
bility prediction tasks, with the lowest Continuous Ranked
Probability Score (CRPS) and Pinball Loss of 4.75 and
3.38 x 10-2, respectively. The predicted distribution of the
research model is closer to the true data distribution and
has good calibration throughout the entire prediction in-
terval. According to Table 3, the MS-AGCN-MHA model
is not only applicable to traditional load datasets but also
demonstrates excellent prediction accuracy and general-
ization ability in modern power system environments with
higher penetration and greater uncertainty of renewable
energy, providing a more comprehensive basis for its prac-
tical deployment in future smart grids.

3.4 Model’s Generalization Ability Verification
on Chinese Power Grid Data

To test the performance of the MS-AGCN-MHA model in
actual power grid scenarios in China, a generalization ex-
periment was conducted on the 2023 load dataset of the
Guangdong power grid. The load in this region is signifi-
cantly affected by temperature, with a high proportion of



Table 4

Performance Comparison of Various Models in the Guangdong Power Grid Scenario in China

Model RMSE (MW) | MAE (MW) | MAPE (%) | Peak load error (%) | CRPS | Pinball Loss (x10~2)
ST-GCN-Attention | 86.45 63.27 8.91 9.23 6.88 4.85
MSCNN-MHA 83.92 61.84 8.65 8.97 6.59 4.66
GCN-GRU 89.13 65.42 9.27 9.58 7.12 5.03
MS-AGCN-MHA 78.36 56.19 7.82 8.14 6.05 4.27

Table 5

Interface Design Specifications

Interface layer Specification content

Standards/Protocol recommendations

Real-time load data (all nodes)

TIEC 61970 CIM/CIS

Data input Breaker status and topology

IEC 61850 SCL

Renewable energy ultra-short-term forecast | IEC 61400-25

Meteorological monitoring data

Custom JSON/AVRO

Synchronous prediction request/response

RESTful API/¢gRPC

Service interface

Asynchronous prediction task management | AMQP/MQTT

Model metadata query

Swagger/OpenAPI 3.0

Node load prediction values (multi-scale)

Standard JSON Schema

Data output

Prediction uncertainty intervals

(Includes timestamp, node 1D,

O DO = QoI D] = | QO B =

Model confidence and health status

value, quality code)

cooling load in summer and large changes in daily load
rate, which puts higher demands on the prediction model.
The experimental results are shown in Table 4.
According to Table 4, the MS-AGCN-MHA model still
maintains optimal performance on the data of the Chinese
power grid. Compared to international datasets, the abso-
lute error of various models on Guangdong power grid data
has increased, which is due to the higher load base and
more complex operating characteristics of China’s power
grid. The RMSE and MAPE of the MS-AGCN-MHA
model are 78.36 MW and 7.82%, respectively, which are
significantly lower than the comparison model, while main-
taining the lowest peak load error of 8.14%. In addition,
the CRPS of the MS-AGCN-MHA model is 6.05, and the
Pinball Loss is 4.27 x1072, which is still significantly lower
than the comparison model. MS-AGCN-MHA effectively
captures the power interaction patterns between regions
within Guangdong Province through an adaptive adja-
cency matrix, and the MHA mechanism exhibits better
adaptability to the unique holiday load changes in China.

3.5 Interface Design Specification

To achieve seamless integration between the model and
the production control system, an interface architecture
and core data interaction specification for the model and
real-time control system have been proposed. It mainly
includes five modules: historical database, data interface,
MS-AGCN-MHA model, predictive service bus, and ad-
vanced application software. The specific interface design
specifications are shown in Table 5.

According to Table 5, this design follows the microser-
vice architecture concept, encapsulating the prediction
function as independent and reusable services, and de-
coupling them from various advanced applications such as
power flow calculation and security-constrained economic

scheduling through the prediction service bus. The data
interface layer is responsible for real-time alignment, for-
mat conversion, and quality verification of raw data ob-
tained from historical databases, ensuring the timeliness
and consistency of input data.

4. Summary

Grid safety dispatch imposes higher requirements on LF
accuracy. In response to the challenges posed by the com-
plex multi-scale characteristics, dynamic spatial dependen-
cies, and strong non-stationarity in power LF, this re-
search designed the MS-AGCN-MHA power LF model.
This study proposed the AGCN-MHA prediction algo-
rithm, which combined AGCN to characterize dynamic
spatial dependencies and the MHA mechanism to capture
long-term and short-term time series correlations. It was
supplemented by Fourier transform FD analysis and resid-
ual units to achieve end-to-end load prediction. The exper-
imental results showed that the model achieved R2 values
of 0.854 and 0.843, respectively, on the ISO-NE and Build-
ingsBench datasets with a 6-hour prediction step length.
The model maintained R2 values of 0.769 and 0.775 for
48-hour predictions. The RMSE values under interference
scenarios such as Gaussian noise, pulse interference, load
changes, and extreme cold weather were 47.96 MW, 49.10
MW, 51.31 MW, and 53.24 MW, respectively, with infer-
ence delays of 15.17 ms, 15.52 ms, 15.76 ms, and 15.95 ms,
respectively. The Pearson correlation coeflicient reached
0.94, significantly outperforming comparison models such
as ST-GCN-Attention, MSCNN-MHA, and GCN-GRU.
Research indicates that the synergistic effect of dynamic
spatial modeling, multi-scale temporal feature extraction,
and FD information fusion is a key mechanism for improv-
ing prediction accuracy, real-time performance, and inter-



ference resistance. However, there are still shortcomings
in the research, such as a large number of model parame-
ters and long training times. Future work should focus on
optimizing the model structure while maintaining predic-
tion performance and reducing computational overhead.
Additionally, the potential applications of the model in
power grid scenarios with higher proportions of new en-
ergy sources and more frequent dynamic changes in node
topology should be explored.
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