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Abstract

In industrial production systems, motors are widely used across sec-

tors such as transportation and energy production. Current diagnosis

methods primarily rely on signal analysis and single-model recog-

nition, resulting in low precision. The current diagnostic methods

mainly rely on signal analysis and single-model recognition, which

have deficiencies in capturing complex noise environments and long-

sequence fault features, resulting in diagnostic accuracy often be-

low 90% in actual industrial scenarios. This paper proposes a novel

fault diagnosis model that deeply integrates a Belief Rule Base with

a Bidirectional Long Short-Term Memory network. Diverging from

conventional sequential or parallel structures, the proposed model in-

troduces a ”tunable input” mechanism, where the Belief Rule Base’s

real-time inference confidence directly gates and modulates the in-

put channels of the Bidirectional Long Short-Term Memory, enabling

dynamic, evidence-driven feature prioritization. The model pro-

cesses uncertainty-embedded diagnostic signals and extracts long-

range temporal dependencies to achieve accurate motor fault diag-

nosis. The test results indicate that the model achieves 99.82% pre-

cision, 99.45% recall, and 99.34% F1 score on the training set. In

the loss value tests, the loss converges to 0.064 after 60 iterations,

outperforming the comparison models. Overall, the proposed model

effectively overcomes the deficiencies in reference and accuracy found

in existing methods. It applies to multiple motor types and offers a

new approach to motor fault diagnosis, enabling intelligent detection

in industrial equipment.
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1. Background

As industrialization continues to advance, motors serve
as the core power source for a wide range of mechanical
equipment and are used across many applications. Their
operating status directly affects production efficiency and
equipment safety [1]. Accurate fault diagnosis is a key
part of motor operation and maintenance. Low diagnos-
tic accuracy may lead to extended downtime, while high-
accuracy fault diagnosis ensures stable mechanical system
operation [2]. Traditional motor fault diagnosis mainly
depends on experience-based judgment and simple instru-
ment testing [3]. These methods have drawbacks, including
high misdiagnosis rates due to subjectivity and untimely
fault warnings due to low efficiency. Therefore, how to
achieve efficient and accurate motor fault diagnosis has
become a research focus [4]-[5]. As computer technology
advances, data-driven fault-diagnosis models have demon-
strated emerging capabilities [6]. However, the existing
mainstream methods have obvious limitations. For exam-
ple, the model based on the combination of generative
adversarial networks and convolutional neural networks
(GAN-CNN) may have a diagnostic accuracy drop of more
than 10% under substantial noise interference. Although
Transformer-based models are good at modeling long se-
quences, their computational complexity is high, and the
time per inference often exceeds 25ms, making it challeng-
ing to meet the real-time requirements of industry. These
quantitative deficiencies (such as accuracy below 90% and
high reasoning delay) seriously limit its practical appli-
cation on industrial sites. Among them, the Belief Rule
Base (BRB) and Long Short-Term Memory (LSTM) can
be combined to form a BLSTM network. This network
is good at processing fuzzy information and uses a gate-
control mechanism to capture temporal dependencies in
long sequences [7]. Applying this network to motor fault
diagnosis enables the quantification of the logical relation-
ships between key factors and fault types, and further links
fault factors to dynamic features, thereby improving diag-
nosis efficiency. This paper proposes a BLSTM network for
motor fault diagnosis, aiming to build a diagnosis network
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with tunable inputs to achieve priority-based diagnosis and
provide scientific decision-making support. The innovation
lies in cross-domain technology integration and the evo-
lution from static to dynamic diagnosis, contributing to
equipment management and intelligent manufacturing.

2. Related Works

BRB integrates fuzzy set theory with Dempster-Shafer ev-
idence theory. It effectively handled uncertainty and in-
accuracy in classification tasks and could model nonlin-
ear relationships. It played an important role in both the
motor and network communication fields, and scholars at
home and abroad researched it. To enhance the stability
of power grid intrusion detection systems, Durairaj et al.
proposed a method that integrates RBR with a greedy al-
gorithm. They used RBR to build a rule base to identify
intrusion types and dynamically update it using a greedy
algorithm to match and reduce false alarms quickly [8].
Akiner et al. raised a method combining a fuzzy inference
system with BRB to predict evapotranspiration. They first
used the fuzzy inference system to process fuzzy inputs
related to evapotranspiration, then integrated uncertain
knowledge through the BRB rule base, and finally fused
the evidence reasoning to output the prediction results
[9]. LSTM, through its unique gate control mechanism,
enabled the model to adapt dynamically to changes in se-
quence information and to learn complex sequence pat-
terns. To address the potential short-term memory issue
in LSTM applications, Kong et al. integrated segmenta-
tion and channel independence into the LSTM. They first
segmented the input sequence, then introduced channel
independence to enhance long-sequence modeling and to
optimize performance on time-series tasks [10]. To ad-
dress the problem of insufficient real-time performance in
gesture navigation systems, Lu et al. proposed a multi-
average LSTM prediction network. The network first seg-
mented gesture sequences, then extracted multi-scale fea-
tures, and simplified computation nodes to accelerate in-
ference and achieve real-time gesture prediction [11]. To
assess the health status of lithium batteries, Zhang et al.
developed an LSTM-based assessment method. They col-
lected historical data on voltage and current to build time-
series samples, trained an LSTM network to learn battery
degradation patterns, applied an attention mechanism to
focus on key features, and finally generated a health assess-
ment [12]. To address low accuracy in automatic subtitle
generation for videos, Kavitha N et al. proposed a net-
work combining an attention mechanism with an LSTM.
They used an LSTM to process frame-sequence features
and extract visual-sequence information. Then they ap-
plied an attention mechanism to focus on key frames, fus-
ing sequence and key features to generate subtitles with
improved accuracy [13].

Motor faults usually include electrical rotor faults and
mechanical bearing faults. Their diagnostic accuracy de-
termined whether the motor system could operate stably.
Scholars at home and abroad conducted research on mo-

tor faults from various perspectives. To accurately detect
faults in induction motors, Jigyasu et al. developed a
method for vibration signal-based fault diagnosis. They
collected vibration signals from induction motors, per-
formed filtering and noise-reduction preprocessing, com-
pared regular and faulty features, and identified fault types
using expert rules to achieve accurate detection [14]. To
improve motor diagnosis performance, Guo J et al. pro-
posed a deep nonlinear-order recurrent convolutional net-
work. They first segmented vibration signals into frames,
then enhanced feature representation via a nonlinear-order
transformation, captured temporal dependence with recur-
rent layers, and finally applied an attention mechanism to
focus on fault features [15]. Hsu et al. proposed a method
combining random forests and extreme gradient boosting
for electromechanical fault diagnosis. They first extracted
motor fault features, used random forests to select impor-
tant features preliminarily, then applied extreme gradient
boosting to learn nonlinear relationships, and merged the
two to output diagnosis results [16]. For the fault diag-
nosis of voltage source inverters, Rokocakau et al. pro-
posed a shallow neural network method. They collected
voltage and current signals, extracted abnormal features,
performed feature selection and dimensionality reduction,
and input the data into the network to learn standard and
fault patterns, achieving fast fault detection and localiza-
tion [17].

However, prevailing data-driven diagnosis methods still
exhibit notable limitations. Models based on Principal
Component Analysis (PCA) or Linear Discriminant Anal-
ysis (LDA) often fail to capture the long-term temporal
dependencies in motor vibration signals due to their in-
herent linearity and static nature. While deep learning
models like Convolutional Neural Networks (CNNs) ex-
cel at local feature extraction, their ability to model long-
range contextual relationships in sequential data is inher-
ently constrained. Although Recurrent Neural Networks
(RNNs) and their variants, such as Long Short-Term Mem-
ory (LSTM), are designed for sequences, they can struggle
to process fuzzy or uncertain information commonly found
in industrial data, and their performance may degrade with
extremely long sequences. Furthermore, methods that rely
on manual feature engineering lack end-to-end optimiza-
tion and are often not robust to noise. To address these
gaps, this paper proposes a BLSTM network that explic-
itly integrates a BRB. The main advantages of this method
are three: First, it retains and enhances the inherent gate
mechanism of LSTM, effectively captures the long-term
dynamic patterns in the fault evolution process, and di-
rectly overcomes the deficiencies of static models such as
PCA-LDA; Secondly, the introduction of BRB provides
a structured framework for handling the uncertainty and
fuzziness of input signals, which is a capability lacking in
standard lstm and cnn. Thirdly, the proposed ”adjustable
input” mechanism, under the guidance of BRB, enables
the model to dynamically prioritize features, resulting in
more robust and interpretable diagnoses than purely data-
driven black-box models. This hybrid architecture achieves
outstanding performance, especially with higher accuracy
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on long-sequence data, and significantly reduces the false
alarm rate under noisy conditions, thereby precisely ad-
dressing the weaknesses of existing methods.

While integrating knowledge bases with deep learning
shows promise, existing approaches often treat the knowl-
edge module as a static feature extractor or a post-hoc
interpreter. The knowledge base and the neural network
typically operate in a sequential or loosely coupled man-
ner, lacking a closed-loop, synergistic interaction during
feature learning and temporal modeling. This limits the
model’s ability to focus on the most relevant information
under uncertainty adaptively. To bridge this gap, this pa-
per proposes a Tunable Input BLSTM network, where the
BRB is not merely a preprocessor but an active, integrated
controller that dynamically tunes the BLSTM’s input fo-
cus based on its evolving belief state, representing a signif-
icant structural and functional advancement over existing
hybrid frameworks.

3. BLSTM Fault Diagnosis Model for Motor
Faults

3.1 Optimized Design of BLSTM Network Based
on Improved CNN

The BRB serves as a core component for modeling ex-
pert knowledge and handling uncertainty within the pro-
posed model. It operates on a set of ”if-then” rules where
the antecedents (IF parts) are composed of belief distri-
butions over the reference values of input attributes (e.g.,
vibration amplitude can be ”Low,” ”Medium,” or ”High”
with certain degrees of confidence), and the consequents
(THEN parts) are belief distributions over possible fault
outcomes. This structure allows BRB to formally repre-
sent and process the fuzziness and uncertainty inherent
in real-world motor signals. The inference mechanism of
BRB, namely the Evidential Reasoning (ER) algorithm,
aggregates activated rules based on their matching degrees
and rule weights, ultimately producing a unified belief dis-
tribution that quantifies the confidence for each potential
fault type. In our architecture, this output belief distribu-
tion from the BRB is not the final diagnosis. However, it is
strategically utilized as a refined, high-level input feature
sequence for the subsequent BLSTM network. This inte-
gration enables the BLSTM to focus on learning the tem-
poral evolution of these semantically rich ”belief states,”
thereby effectively combining uncertainty reasoning with
deep sequential pattern recognition. The parameters of
the BRB system are determined through a hybrid strat-
egy of expert initialization and data optimization: Firstly,
the reference values of the prerequisite attributes (such as
high/medium/low vibration amplitude) and the initial rule
confidence are manually set based on the statistical charac-
teristics of the training data and domain knowledge. Sub-
sequently, the projection covariance Matrix Adaptive Evo-
lution Strategy (CMA-ES) was adopted to jointly optimize
the rule weights, attribute weights, and result confidence
levels, with the diagnostic accuracy of the training set as

the objective function. For example, the typical rule form
is: IF Vibration RMS IS High AND Spectral Centroid
IS High THEN (Bearing Fault,0.85), (Rotor Fault,0.10),
(Normal,0.05). Motor fault diagnosis monitors and judges
the operation of equipment and systems to identify faults
and determine fault types. It ensures safe operation and
reduces maintenance costs [18]. This paper uses BRB due
to its strong ability to handle uncertainty in fault-feature
signals. It also has strong adaptability to complex data.
LSTM captures dynamic changes in information over time
and the context relationship. It effectively extracts hidden
features in fault signals. The combination of both gives ad-
vantages in motor fault diagnosis. To verify the necessity
and superiority of combining the BRB and LSTM modules
in the BLSTM model, an ablation experiment was con-
ducted. Four models, namely BRB-ONLY, LSTM-ONLY,
BLSTM-series, and BLSTM (proposed in the study), were
compared. Among them, the BLSTM series is a simple
structure. That is, the LSTM output is used as the input
to the BRB to compare the effectiveness of the fusion struc-
ture proposed in this paper. The test results are shown in
Table 1.

Table 1
Results of the Ablation Experiment

Model Accuracy rate F1 points
BRB-only 89.45% 88.91%
LSTM-only 93.72% 93.15%
BLSTM-series 96.88% 96.45%
BLSTM (proposed in the study) 99.82% 99.34%

In Table 1, the BRB-only model has the lowest accuracy,
indicating that it is challenging to capture complex dy-
namic patterns in fault signals solely through expert rules
and uncertain reasoning. The LSTM-only model outper-
forms the BRB-only model, demonstrating the advantages
of deep learning for feature extraction. However, its per-
formance ceiling is limited by the noise and uncertainty
in the original data. The performance of the BLSTM-
series model has been significantly improved, indicating
that even simple combinations can bring gains. However,
its performance is still lower than that of the model pro-
posed in this paper. The BLSTM model in this paper has
achieved the best performance. This fully demonstrates
the effectiveness of the proposed fusion architecture: The
BRB module first performs ”defuzzification” and ”struc-
turing” on the input information, providing a cleaner, more
discriminative feature sequence for the LSTM; the LSTM
then conducts precise time-series modeling on this basis.
The innovation of this model lies in the collaborative work-
ing mechanism between the two: BRB, as the front-end
inference engine, transforms the original, fuzzy, and uncer-
tain signals into regular features with a confidence distri-
bution; LSTM, as the backend timing analyzer, conducts
in-depth modeling of this feature sequence. Therefore,
this paper proposes a BLSTM network. In this study,
the BLSTM classifier adopts a single-layer bidirectional
LSTM structure, with 128 hidden units in each direction
and an output dimension of 256. To prevent overfitting,
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a Dropout layer with a dropout rate of 0.3 is set after
the BLSTM layer. The classifier part consists of a fully
connected layer with 64 neurons (ReLU activation) and
an output layer (Softmax activation), with a Dropout rate
of 0.2 in between. The model uses the Adam optimizer
(learning rate 1e-4), a batch size of 64, and is trained for
100 cycles, adopting the early stopping strategy. The core
innovation of this BLSTM network lies in its ”Tunable
Input” mechanism. Unlike traditional models with fixed
input pipelines, our model dynamically adjusts the input
data weighting and processing flow in response to real-time
feedback from the BRB inference module. This tunability
allows the model to prioritize more uncertain or critical
fault features, enhancing diagnostic focus and accuracy.
The operation process of this network is shown in Figure
1.
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Figure 1 Operation flow chart of BLSTM network 
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Figure 3 CBLSTM operation flow chart 

Figure 1. Operation Flow Chart of BLSTM Network

As shown in Figure 2, the BLSTM network first uses
BRB to label motor operation data. It labels normal val-
ues and abnormal values. Two LSTM subnetworks process
normal values and abnormal values separately. Based on
the LSTM input dimensions, the two subnetworks are split
by time series and used as inputs for network training. The
final output is the motor fault features [19]. The tunabil-
ity of the input is implemented through a gating mecha-
nism that connects the BRB and the dual LSTM subnet-
works. The confidence distribution generated by the BRB
at each time step serves not only as a feature but also as
a control signal. A tunable parameter, which can be op-
timized during training, governs the influence of this dis-
tribution. When the BRB’s output indicates high uncer-
tainty (e.g., confidence is evenly distributed across multiple
fault types), the parameter increases the flow of informa-
tion to the LSTM subnetwork dedicated to anomaly anal-
ysis, enabling more nuanced feature extraction from am-
biguous signals. Conversely, when the BRB output shows
high confidence in a particular state (normal or a specific
fault), the parameter strengthens the path to the corre-
sponding LSTM subnetwork, refining the feature sequence
for that specific class. This dynamic routing embodies the
Tunable Input, enabling the model to adaptively recon-
figure its input focus based on instantaneous diagnostic
evidence. The BRB converts an input value of a premise
attribute as shown in Equation (1).

S(Bi, αi) = (lim, βim),m = 1, ...,mi (1)

In Equation (1), S represents the distribution of the input
value of the premise attribute. αi represents the confi-
dence of premise attribute Bi. lim represents the m − th

reference value of the input premise attribute Bi. βim rep-
resents the confidence of lim. mi represents the number
of reference values. Then, the evidence reasoning converts
and integrates all premise attribute input values under the
confidence rules. The calculation is shown in Equation (2).

K =

 N∑
j=1

L∏
k=1

(mj,k +mD,k)− (N − 1)

L∏
k=1

mD,k

−1

(2)

In Equation (2), mj, k is the basic probability allocation
assigned to grade by Rule k, mD,k is the probability qual-
ity not assigned to any grade, and L is the total number
of rules in the rule base. N represents the number of in-
put values of the premise attribute. The LSTM module’s
output is shown in Equation (3).

Ht = θt⊙ tanh(Ct) (3)

In Equation (3), Ht represents the output gate result of the
LSTM. θt represents the result of the input gate. ⊙ rep-
resents element-wise multiplication. tanh represents the
activation function. Ct represents the cell gate state. The
BLSTM network first uses the BRB module to handle un-
certainty in motor data. Then, the LSTM module extracts
deep-time-series features for motor fault diagnosis. How-
ever, the BLSTM network relies heavily on LSTM for long-
term temporal dependence. It has low sensitivity to local
high-frequency transient features in motor fault data. It
may ignore local key information, reducing diagnostic ac-
curacy in the early stage. The Convolutional Neural Net-
work (CNN) improved by the Attention Mechanism (At-
tention) weights CNN local features with Attention. The
weighted CNN uses the sliding-window convolution oper-
ation to capture local, high-frequency transient features
precisely [20] [21]. The operation process of the improved
CNN is shown in Figure 2.
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Figure 2. Improved CNN Operation Flow Chart

As shown in Figure 2, the improved CNN receives data
first. The Attention module computes the weight for each
feature using the attention layer. The weighted data is
sent to the CNN module. The CNN captures local features
through the convolution layer with a sliding window. The
pooling layer compresses feature dimensions and retains
local maxima. Finally, the fully connected layer outputs
the weighted result [22]. The output of the attention layer
of Attention is shown in Equation (4).
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Y = softmax(
QTK√
Dk

)V (4)

In Equation (4), QTK is the attention matrix.
√
DK is the

scaling factor. V represents the value matrix. softmax
represents the activation function. In the model of this
paper, the number of heads h is a key hyperparameter.
After preliminary experiments and grid search, this study
finally set h=8. This configuration achieves the best bal-
ance between computational efficiency and model perfor-
mance; the multi-head self-attention calculation is shown
in Equation (5).

Multi− head(Q,K, V ) = Concat(att(Q1,K, V ) · · · att(QH ,K, V ))
(5)

In Equation (5), Multi − head represents the matrix.
Concat represents the matrix product. att represents the
single-head self-attention. The output of the CNN convo-
lutional layer is presented in Equation (6).

Z = RFi−1 + (Ki − 1)×
i−1∏
j=1

Sj (6)

In Equation (6), Z represents the output of the convolution
layer. RFi−1 is the receptive field, Ki represents the con-
volution kernel, and Sj represents the stride of layer j. The
core purpose of the improved CNN attention mechanism
adopted in the research is to capture local high-correlation
features in motor fault signals more efficiently, while avoid-
ing the high computational complexity of standard Trans-
former self-attention when processing long sequences. The
computational complexity of the standard self-attention
mechanism is O(n2 ·d), where n is the sequence length and
d is the feature dimension. This incurs a significant com-
putational overhead for the vibration signal sequences of
long-running motors. The core operations of the improved
CNN attention mechanism proposed in the research are the
convolutional sliding window and attention weighting. For
an input with a convolution kernel size of k, a sequence
length of n, and a feature dimension of d, its computa-
tional complexity is mainly determined by the convolution
operation, which is O(n ·k ·d2). It offers significant compu-
tational efficiency and is better suited for diagnostic tasks
in industrial scenarios that require real-time performance.
Standard self-attention features a global receptive field and
minimal inductive bias, making it highly flexible. However,
it is prone to overfitting when the data volume is limited
and may also focus on all time points, being insensitive
to local impact characteristics that are physically signifi-
cant in motor signals. The improvement of CNN attention:
The convolution operation introduces a strong inductive
bias of locality and translation invariance, which is highly
consistent with the characteristics of periodic impact sig-
nals generated by motor faults (such as bearing pitting).
This mechanism forces the model to first construct feature
relationships within local Windows and then weight them
through attention, enabling it to focus more accurately
and efficiently on the key fault features generated by local

physical processes. In conclusion, this method is not in-
tended to surpass the Transformer in terms of universality,
but rather serves as a more efficient, proprietary alterna-
tive designed for the specific task of motor fault diagnosis.
Under the premise of comparable accuracy, it significantly
enhances computational efficiency and has greater engi-
neering practical value. The improved CNN has dual abil-
ities of local feature extraction and dynamic focusing. It
also improves local feature quality and multi-modal fusion
efficiency. BLSTM processes fuzzy information efficiently
and captures long-term sequence dependence accurately to
achieve motor fault diagnosis. Therefore, this paper com-
bines the improved CNN with BLSTM to form CBLSTM.
The operation process is shown in Figure 3.
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Figure 3. CBLSTM Operation Flow Chart

Figure 3 illustrates that in the CBLSTM operation pro-
cess, the data undergoes normalization first. The Atten-
tion module enhances the expression of fault data features.
Then CNN captures local features. BRB processes fuzzy
features. LSTM captures global features and performs
time series modeling. Finally, the fault diagnosis result
is output. The CNN module focuses on extracting local
data features. Its output Hc is shown in Equation (7).

Hc = Tanh(P ×W + b) (7)

In Equation (7), Tanh represents the hyperbolic tangent
function. P represents the output of the pooling layer. b
represents the bias. The BRB module uses the probability
weighting method for solving. The weighting coefficient St

is shown in Equation (8).

St =

i∑
t=1

atht (8)

In Equation (8), at represents the corresponding attention
weight. ht represents the hidden state of t at the corre-
sponding time. Finally, the output layer of LSTM outputs
the result Yt, calculated as shown in Equation (9).

Yt = Relu(Wjst + b0) (9)

In Equation (9), Relu is the activation function. WJ is
the weight system. St is the weighting coefficient. b0 is
the bias vector. During BLSTM motor fault diagnosis,
the improved CNN dynamically assigns weights to capture
spatial correlation in short time sequences precisely. It im-
proves the representation and capture of local features. It
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compensates for the omission of local features in BLSTM.
This enhances the efficiency and accuracy of motor fault
diagnosis.

3.2 Construction of PV-CBLSTM Motor Fault
Diagnosis Model

The CBLSTM model demonstrates superior diagnostic ac-
curacy in controlled experimental settings. However, in
practical industrial settings, sensor-collected vibration sig-
nals are invariably contaminated by significant background
noise from complex operating environments, such as elec-
tromagnetic interference and mechanical impacts. This
noise interferes with the CNN module’s extraction of dis-
criminative local features. It introduces fluctuations in
confidence levels during BRB rule-matching, ultimately
degrading the accuracy and reliability of the diagnostic
results. To address these practical challenges, this study
introduces an enhanced Variational Mode Decomposition
(VMD) technique, optimized via a Bayesian-improved
Particle Swarm Optimization (PSO), into the CBLSTM
framework, forming the final PV-CBLSTM fault diagnosis
model. The VMD improved by Wavelet Threshold Denois-
ing (WT) adaptively decomposes signal components based
on their inherent characteristics, enabling targeted isola-
tion of various noise types. Although CBLSTM accurately
diagnoses motor faults in specific experimental settings,
the signals collected by sensors during practical diagno-
sis often contain significant noise. This noise reduces the
ability to extract local features and increases fluctuations
in rule-matching confidence, thereby decreasing the accu-
racy of diagnostic results. The Variational Mode Decom-
position (VMD) improved byWavelet Threshold Denoising
(WT) decomposes modal components adaptively based on
signal characteristics and targets various types of noise. In
industrial practice, it is often difficult to obtain an accurate
prior distribution for faults. Therefore, this study adopts a
strategy that combines an information-free prior with dy-
namic updates. At the beginning of the optimization, due
to a lack of knowledge, this study assumes that the po-
tential states of all particles are equally possible, that is,
this study sets a uniform prior. Subsequently, during the
PSO iteration, this study uses the continuously updated
historical information from the particle swarm to dynami-
cally adjust the prior. Specifically, by correlating the prior
probability with the historical optimal fitness distribution
of the particle swarm, the entire process is unsupervised. It
relies solely on fitness information generated during opti-
mization, thereby addressing the problem of scarce labeled
data in engineering practice. Therefore, this study intro-
duces the improved VMD into CBLSTM to achieve noise
reduction. The noise reduction process of the improved
VMD is shown in Figure 4.

In Figure 4, when the improved VMD processes noisy
features, it first decomposes multiple noisy signals into
modes through VMD. Then VMD selects noisy IMF sig-
nals and sends them into the WT module. The WT mod-
ule identifies high-frequency and low-frequency signals. If
a signal is high-frequency, it denoises the amplitude factor
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Figure 4. Improved VMD Denoising Flowchart

and reconstructs the signal by wavelet reconstruction. The
reconstructed signal and the low-frequency signal are then
reconstructed again to obtain the denoised signal. For each
modal sequence, the Hilbert transform calculates the ana-
lytic signal related to each modal sequence to obtain the
single-sided spectrum signal, as shown in Equation (10).

Hilbertx(t) =
1

π

∫ +∞

−∞

x(v)

t− v
dv (10)

In Equation (10), Hilbert represents the sequence, and v
represents the frequency speed. In signal processing, the
hard-threshold function of the WT is given by Equation
(11).

ω̂j,k =

®
ωj,k, |ωj,k| ≥ λ

0, |ωj,k| < λ
(11)

In Equation (11), ω̂j,k denotes the wavelet coefficients pro-
cessed by the threshold function, ωj,k denotes the wavelet
coefficients, and λ represents the threshold. The Signal-
to-Noise Ratio (SNR) measures the ratio of the signal to
the noise. A higher SNR indicates better optimization. To
verify that adding WT effectively reduces noise interfer-
ence, SNR is selected as the metric, and its calculation is
shown in Equation (12).

SNR = 10 log
Ps

pn
=

∑N−1
n=0 xs(n)

2∑N−1
n=0 xn(n)2

(12)

In Equation (12), Ps denotes the signal power, Pn is de-
fined as the noise signal power, xs(n) represents the pro-
cessed signal, and xn(n) represents the noise signal. The
improved VMD effectively separates noisy signals, balances
the modal components, and reduces the likelihood of false
modes. However, the improved VMD is easily disturbed by
impact features, leading to mode confusion, and WT lacks
adaptive capability against dynamic noise. The Particle
Swarm Optimization (PSO) enhanced by Bayesian Deci-
sion (BD) optimizes key processes via intelligent parameter
search and probabilistic selection, demonstrating strong
stability in complex, dynamic environments. Therefore,
this study introduces improved PSO into the improved
VMD to address subjectivity in VMD mode selection and
the WT’s insufficient adaptability to dynamic noise. The
operation process of the improved PSO is shown in Figure
5.

As shown in Figure 5, the single-particle data of the im-
proved PSO are optimized into PSO particles under the
decision differentiation of BD. After extracting features
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Figure 5. Improved PSO Operation Flow Chart

from different types of PSO particles, the PSO reconstruc-
tion particles are formed under the combined effect of BD
probabilistic differentiation and PSO optimization. These
reconstructed particles are then used as the input of the
improved VMD. The probabilistic selection of particles by
BD is calculated as shown in Equation (13).

P (ωj |X ) =
P (X |ωj )P (ωj)

P (X)
(13)

In Equation (13), P (ωj) represents the prior probability of
the particle in its natural state, and P (X) represents the
random variable of the feature vector. The optimization
precision of PSO particles is shown in Equation (14).

θ = θ − η · ∇θJ(θ;x
(i); y(i)) (14)

In Equation (14), θ represents the parameter to be opti-
mized, J(·) is defined as the loss function, x(i) represents
the PSO-optimized particle, and y(i) represents the related
factor of the PSO-optimized particle. PSO constructs a
comprehensive influence matrix T to represent the com-
bined effects of direct and indirect influences among fac-
tors, as shown in Equation (15).

T = lim
I→∞

(
X +X2 + · · ·+XI

)
= lim

I→∞

(
E +X +X2 + · · ·+XI−1

) (15)

In Equation (15), X represents the direct influence matrix,
E represents the identity matrix, and I represents the num-
ber of factors. The improved VMD decomposes noisy sig-
nals effectively for motor fault diagnosis, thereby improv-
ing accuracy, while the improved PSO optimizes VMD’s
adaptability to dynamic noise and resolves mode confu-
sion. Therefore, the combination of improved VMD and
improved PSO effectively reduces the influence of external
noise on motor fault diagnosis. Combined with CBLSTM,
this study finally constructs the PV-CBLSTM fault diag-
nosis model, and its operation process is shown in Figure
6.

As shown in Figure 6, all vibration signals undergo a
standardized preprocessing process: firstly, a 4-order But-
terworth bandpass filter (10-2000Hz) is used for noise re-
duction, followed by Z-score standardization processing.
On this basis, a 30-dimensional feature vector, including
time-domain statistical features (such as mean, root mean
square, peak, kurtosis, etc.) and frequency-domain fea-
tures (such as the spectral centroid and the root mean
square frequency after the FFT transformation), is ex-
tracted from the preprocessed signal. For time-series mod-
els, these features are constructed as sequence samples of
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Figure 6. PV-CBLSTM Fault Diagnosis Model Operation
Flow Chart

100 time steps to ensure that the data format matches
the model architecture. The PV-CBLSTM fault diag-
nosis model uses an improved PSO module to perform
dynamic optimization and probabilistic selection of input
data, thereby improving data quality. Then the improved
VMD module decomposes the original motor data and iso-
lates noise, thereby increasing the accuracy of diagnosis.
The improved CNN module extracts local features from
the denoised signals to enhance feature representation. Fi-
nally, the BLSTM module outputs the diagnosis results
for motor fault types and severity via BRB-based uncer-
tainty reasoning and LSTM-based temporal modeling. In
summary, the PV-CBLSTM fault diagnosis model not only
addresses the impact of noisy signals on fault diagnosis but
also ensures data quality with its excellent generalization
ability and robustness. It achieves accurate motor fault di-
agnosis and provides strong technical support for industrial
motor fault diagnosis. The confidence vector generated by
BRB reasoning is incorporated into the LSTM’s calcula-
tion of its forgetting gate. The expression of the coupled
forgetting gate is shown in Equation (16).

ft = σ(Wf · [h(t−1), xt] + bf +WBRB · bt) (16)

In Equation (16), ft represents the coupled forgetting gate
state vector at time step t, σ represents the Sigmoid activa-
tion function, Wf represents the inherent weight matrix of
the forgetting gate, [h(t−1), xt] represents the basic input
of the forgetting gate, WBRB represents the BRB coupled
weight matrix, and bt represents the confidence distribu-
tion vector generated by the inference of the BRB module.

4. Performance Analysis of Motor Fault Diagno-
sis Model Based on CBLSTM

4.1 Validation of CBLSTM Effectiveness

To ensure a comprehensive and fair evaluation, the pro-
posed CBLSTM model is compared against a diverse set
of baseline models, encompassing both classical machine
learning and modern deep learning approaches. The base-
lines include:Informer: A state-of-the-art Transformer-
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Table 2
Compare the Model Structure with the Hyperparameter Settings

Model Core architecture Key hyperparameters Optimizer and Learning rate
CBLSTM Improved VMD-PSO + BRB +

Improved CNN Attention +
BLSTM

BLSTM units: 128 (per direction)
Attention heads: 8
CNN kernels: 32, 64, 128
Dropout: 0.3, 0.2

Adam (1e–4)

Informer Encoder–Decoder with ProbSparse
Self-Attention

Encoder/Decoder layers: 2
d model: 512
Attention heads: 8

Adam (1e–4)

GAN-CNN DCGAN Generator + 1D-CNN
Discriminator

Latent dimension: 100
CNN filters: 32, 64, 128
Dropout: 0.3

Adam (G: 1e–4, D: 2e–4)

DT-RF Ensemble of 100 Decision Trees
with Weighted Voting

Max depth: 15
Min samples split: 5
Criterion: Gini

Ensemble Method

based model for long-sequence time-series forecasting, in-
cluded to benchmark against advanced temporal modeling
capabilities.GAN-CNN: A generative adversarial network
coupled with a convolutional neural network classifier, rep-
resenting hybrid generative-discriminative approaches.DT-
RF: A Decision Tree-Random Forest ensemble with
weighted voting, serving as a firm representative of tradi-
tional, interpretable machine learning methods. To guar-
antee a fair comparison, all deep learning-based models (in-
cluding CBLSTM, Informer, and GAN-CNN) were trained
and evaluated under identical hardware and software en-
vironments, using the same data splits, and were tuned to
their optimal performance on the validation set. Among
them, in order to construct a competitive generative adver-
sarial network comparison model, this study implements
a GAN-CNN architecture that combines a standard deep
convolutional generative adversarial network (DCGAN)
with a one-dimensional convolutional neural network (1D-
CNN) classifier. Its overall framework consists of a genera-
tor, a discriminator (which also serves as a feature extrac-
tor in the classification task), and a classifier. The goal
of the generator is to upsample a random noise vector z
to generate pseudo-data that is similar in dimension and
statistical characteristics to the real motor vibration signal
time series. The discriminator is essentially a convolutional
neural network (CNN). In the adversarial training stage,
it acts as a Discriminator (D); In the fault classification
stage, this study removes its final output layer, uses it as
a Feature Extractor, and connects an additional Classifier
(C) for fault diagnosis. The parameters of each model are
shown in Table 2

As shown in Table 2, the configuration list for all com-
parison models is clearly presented, which significantly en-
hances the repeatability and technical transparency of the
experiment. The experimental operating system was Win-
dows 10, the deep learning framework was TensorFlow,
the optimizer was Adam, the programming language was
MATLAB, the GPU was NVIDIA RTX 4090, the CPU was
Intel i7, and the memory was 256 GB. The performance of
the model proposed in the research is affected by several
key hyperparameters, including the number of heads h for

improving multi-head Attention in CNNs and the number
of hidden-layer units in LSTM. To determine the optimal
configuration, this study used a grid search. Search space
and Settings: Number of attention heads h: 4,8,6. Num-
ber of LSTM hidden units: 64,128,256. The learning rate
of the optimizer Adam: 1e-3, 1e-4, 1e-5. To ensure the au-
thenticity of the test results, the CSDN dataset was used as
the training set, and the CWRU dataset as the validation
set. Both datasets contained abundant motor fault sever-
ity and operation data, making them suitable for motor
fault diagnosis and analysis. For a rigorous evaluation, all
datasets were partitioned using a hold-out method. Specif-
ically, the CSDN dataset was divided into a training set
(80%) and a testing set (20%). The CWRU and FEMTO
datasets were similarly split, with 80% of the data used for
training and the remaining 20% reserved as the validation
set to monitor training progress and prevent overfitting.
This consistent split ratio across datasets ensures a fair and
reproducible comparison of model performance. To ensure
that the experimental conditions are precise and repeat-
able, this study selected vibration acceleration data from
the drive-end bearing in the CWRU dataset. The fault
types include four states: normal, inner-ring fault, outer-
ring fault, and rolling-element fault. The fault-damage
diameter was set to 0.1778mm, a typical minor-damage
size, to test the model’s sensitivity to early faults. The
load condition was 1 hp, and the motor speed was approx-
imately 1772 RPM. The sampling frequency for vibration
data is 12 kHz. The loss value of CBLSTM was tested,
and the results are shown in Figure 7.

In Figure 7(a), the initial loss value of CBLSTM un-
der variable-load industrial operation was 0.125, which de-
creased to 0.064 after 60 iterations and consistently stabi-
lized. As illustrated in Figures 7(b), (c), and (d), the loss
curves of Informer, GAN-CNN, and DT-RF—trained and
validated under the same industrial scenario—eventually
stabilized at 0.126, 0.138, and 0.101, respectively. No-
tably, all three baseline models exhibited higher initial
loss values and required more iterations to converge than
CBLSTM. These results confirm CBLSTM’s stronger gen-
eralization capability in real industrial environments. Its
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Figure 7. Comparison of Loss Value Test Results

superior convergence behavior stems from the Attention
mechanism’s emphasis on salient industrial vibration pat-
terns and CNN’s strength in extracting localized fault sig-
natures, which together enable more representative feature
learning and robust optimization. The Mean Absolute Er-
ror (MAE) and Mean Relative Error (MRE) were then
tested, and the results are shown in Figure 8.
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Figure 8. Comparison of MAE and MRE Value Test Re-
sults

In Figure 8(a), the MAE of CBLSTM was lower than
that of the other models in all datasets for short-term,
mid-term, and long-term tests. The overall MAE was
0.98, while the MAEs for Informer, GAN-CNN, and DT-
RF were 1.3, 1.9, and 2.3, respectively. Figure 8(b)
showed that the overall MRE of CBLSTM was 0.18, which
was lower than that of the comparison models. In sum-
mary, CBLSTM demonstrated superior performance in er-
ror value training. This was attributed to its inherent
BRB-based uncertainty reasoning and LSTM-based tem-
poral feature modeling capabilities, which reduced bias in
data capture and effectively lowered computational errors.
Precision, recall, and F1 score were then tested, and the
results are shown in Figure 9.

In Figure 9(a), the precision, recall, and F1 score of
CBLSTM on the training set were 99.82%, 99.45%, and
99.34%, respectively. GAN-CNN and DT-RF performed
worse, with all indicators below 90%. Figure 9(b) showed
that on the validation set, CBLSTM achieved an accu-

 

Figure 9 Comparison of precision, recall, and F1 score test results 

 

 

 

Figure 10 Identification test of three fault types 

Figure 9. Comparison of Precision, Recall, and F1 Score
Test Results

racy of 98.75%, a recall of 98.56%, and an F1 score of
99.14%, all of which were higher than those of the compar-
ison models. In summary, CBLSTM demonstrated strong
fitting ability and superior overall performance in the tests.
This was attributed to the unique advantages of integrat-
ing CNN, PSO, and other algorithms, which complemented
each other across dimensions, enabling stable convergence
during iteration and improving indicators such as preci-
sion and recall, thereby showing more comprehensive per-
formance in fault diagnosis.

4.2 Analysis of PV-CBLSTM Motor Fault Diag-
nosis Model

Following the validation of the CBLSTM’s core perfor-
mance, this section evaluates the comprehensive PV-
CBLSTM model under more realistic, noisy industrial con-
ditions. The integration of the denoising front-end (PSO-
VMD) is specifically designed to enhance the model’s ro-
bustness, and its performance is compared against models
constructed using Informer, GAN-CNN, and DT-RF. The
experimental settings are shown in Table 3.

Table 3
Experiment Configuration Details

Item Configuration
CPU AMD Ryzen 9 7950X
GPU NVIDIA GeForce RTX 4090
Memory DDR5 8000MHz
Storage ZhiTai TiPro9000
Operating System Windows 10
Training set FEMTO Dataset
Validation set Purdue University Dataset
Data analysis software Python

In Table 3, both datasets included motor fault states
and operational data, thereby enabling more accurate test
results. These two datasets differ in acquisition systems,
working conditions, and original feature dimensions. This
study did not use the original data directly; instead, this
study uniformly extracted the same set of time-domain
and frequency-domain features from the original signals of
both datasets. This move aims to map data from different
sources into the same comparable feature space. Standard-
ize the features extracted above by Z-score, that is, sub-
tract the mean and divide by the standard deviation. This
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operation involves calculating the mean and standard de-
viation for each dataset’s training set, then applying them
to the corresponding training and validation sets. Accord-
ing to the model’s input requirements, the standardized
feature data is constructed into time-series samples of the
same length. The CBLSTM model was used to identify
three types of faults: bearing faults, rotor faults, and shaft
system faults, labeled as A, B, and C. The results are
shown in Figure 10.
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Figure 10. Identification Test of Three Fault Types

As shown in Figure 10(a), the CBLSTM model correctly
identified all three fault types—bearing, rotor, and shaft
system faults (labeled A, B, and C)—with an accuracy
of 0.99 under real plant operating conditions. In con-
trast, Figures 10(b)–(d) reveal that although GAN-CNN
achieved an accuracy of 0.90, it underperformed CBLSTM.
Both Informer and DT-RF showed considerably weaker in-
dustrial applicability, with Informer’s accuracy falling at or
below 0.75. For instance, in diagnosing shaft system faults,
Informer misclassified them as bearing faults with a proba-
bility of 0.02 and as rotor faults with a probability of 0.26.
Overall, CBLSTM delivered significantly more reliable per-
formance in an actual industrial context. This advantage
stems from the model’s effective integration of a wavelet
transform for noise-resistant time–frequency characteriza-
tion and variational mode decomposition for distinguish-
ing modulation modes, enabling it to suppress interference
while retaining discriminative fault characteristics. Vary-
ing levels of noise often contaminate vibration signals col-
lected at industrial sites. To quantitatively evaluate the
noise robustness of each model, this study systematically
injected additive Gaussian white noise with a signal-to-
noise ratio (SNR) ranging from 10 dB to -5 dB into the
preprocessed Purdue University validation set data, and
recorded the diagnostic accuracy of each model. The re-
sults are shown in Table 4.

Table 4 shows that as the signal-to-noise ratio decreases
(noise intensity increases), the diagnostic accuracy of all
models declines. However, the PV-CBLSTM model pro-
posed in this paper maintains the highest diagnostic accu-
racy under all signal-to-noise ratio conditions. Especially
in extremely harsh environments with a low signal-to-noise
ratio (SNR < 0 dB), the performance advantages of PV-
CBLSTM are even more significant. This fully demon-
strates the effectiveness of its internally integrated im-

Table 4
Test Results of Multiple Comprehensive Indicators

Signal-to-noise
ratio (dB)

CBLSTM Informer GAN-CNN DT-RF

10 98.75 95.81 92.34 88.90
8 98.52 94.22 90.15 85.61
6 98.01 92.05 87.33 81.04
4 97.45 88.91 83.72 75.88
2 96.23 84.56 78.95 69.42
0 94.67 78.33 72.18 61.75
-2 91.05 69.84 63.29 52.16
-5 85.31 58.77 51.44 40.02

proved VMD and improved PSO modules in collaborative
noise reduction and feature enhancement: VMD is respon-
sible for stripping the noise-dominated modes from the sig-
nal, while PSO optimizes the parameters of this process,
ensuring that the core fault features are retained to the
greatest extent under strong noise interference, thereby en-
dowing the model with excellent noise robustness. To fur-
ther validate the generalization capability of the proposed
model across different motor operating conditions, com-
parative experiments were conducted against mainstream
time-series models (Transformer, LSTM, TCN) and tested
across a range of motor power levels (0.5kW to 50kW).
The results are shown in Figure 11.
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Figure 11. Comparison of Model Accuracy Across Differ-
ent Motor Power Levels

As shown in Figure 11, the PV-CBLSTMmodel achieves
the highest diagnostic accuracy across all motor power
levels, demonstrating superior generalization. Partic-
ularly in the low-power (0.50kW-17.00kW) and high-
power (33.50kW-50k.00W) ranges, it still achieves accu-
racy above 95%, significantly outperforming the compari-
son models. In contrast, the performance of Transformer
and TCN decreases noticeably at power extremes, indicat-
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Table 5
Test Results of Multiple Comprehensive Indicators

Dataset Model FLOPS/MACs (G) GPU memory
consumption (MB)

Lead time (day) Single inference time
(ms)

Training set

CBLSTM 12.5 1450 7 11.2
Informer 89.5 1089 1 15.7
GAN-CNN 108.9 1494 2 18.9
DT-RF 73.4 962 3 20.3

Validation set

CBLSTM 13.4 1250 6 12.7
Informer 103.4 1167 2 17.7
GAN-CNN 113.4 1678 1 20.2
DT-RF 80.1 1047 3 23.4

ing their higher sensitivity to variations in operational con-
ditions. Finally, to further evaluate the feasibility of the
model in actual deployment, this paper introduces com-
puting efficiency (FLOPS/MACs) and resource utilization
(GPU memory consumption). Lead time for a specific
motor-fault diagnosis was tested, and the results are shown
in Table 5.

In Table 5, the CBLSTM model achieved a computa-
tional cost of 12.5 GFLOPS/MACs and GPU memory us-
age of 1450 MB, while its fault prediction lead time can
reach up to 7 days. In contrast, the GAN-CNN model ex-
hibited significantly higher computational overhead, with
108.9 G FLOPS/MACs and 1494 MB of GPUmemory con-
sumption, reflecting its inefficiency in resource utilization.
On the validation set, the CBLSTM model maintained a
competitive profile with 13.4 G FLOPS/MACs and 1250
MB GPU memory usage, both of which were superior to
those of the comparison models. The single inference times
for CBLSTM on the training and validation sets are 11.2
and 12.7 seconds, respectively, which are much lower than
those of the comparison models. In summary, the test
results showed that the CBLSTM model provided more
accurate and comprehensive performance in fault diagno-
sis. This was attributed to the integration of the global
optimization capability of improved PSO, the adaptive
signal decomposition advantage of improved VMD, and
the strengths of multiple algorithms, which enabled supe-
rior feature extraction and noise suppression, resulting in
stronger overall performance.

5. Conclusions and Recommendations

This study proposed a novel PV-CBLSTM model to ad-
dress the challenges of accurate and early motor fault di-
agnosis under noisy industrial conditions. The core contri-
butions of this work are threefold: First, this study intro-
duced a deeply coupled BLSTM architecture in which the
BRB serves as an active, tunable input processor rather
than a passive component, enabling evidence-driven fea-
ture prioritization. Second, an enhanced variational mode
decomposition (VMD) technique, optimized by a Bayesian-
improved PSO, was integrated to suppress noise interfer-
ence while preserving critical fault signatures effectively.
Third, a comprehensive evaluation demonstrated that the

proposed model significantly outperforms several strong
baselines, including Informer and GAN-CNN, not only in
diagnostic accuracy, recall, and F1-score but also in key
engineering metrics such as false alarm rate and single-
inference time (15.8 ms), confirming its potential for real-
time deployment. Despite its promising performance, this
study has limitations that open avenues for future research.
The current model was validated primarily on bearing and
rotor faults. Future work will focus on. Generalization
to a broader range of motor types and fault modes, in-
cluding complex compound faults. Exploring multi-modal
data fusion by integrating current, thermal, and acoustic
signals with vibration data to form a more comprehensive
health assessment system and developing an online learn-
ing mechanism to allow the model to adapt continuously
to evolving motor conditions and new fault patterns with-
out full retraining, which is crucial for lifelong operation
in industrial settings. These directions will further bridge
the gap between academic research and practical industrial
application.
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