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Abstract

To address the privacy risks of high-frequency and fine-grained elec-

tricity data collected by smart meters, which may expose user be-

havior patterns and lifestyle habits, this study proposes a smart me-

ter data protection model that integrates K-modes clustering–based

shuffled differential privacy with a time auto-wave neural network

(TANN) for TOP-K queries. In the data perturbation stage, the

model allocates privacy budgets efficiently through frequency pre-

diction and a gradient random response mechanism. In the query

stage, it employs temporal dependency modeling within the TANN

structure to enhance the real-time capability and accuracy of TOP-K

queries. Experimental results show that the proposed model achieves

a normalized intra-cluster variance of 0.23, an F1 score of 0.976, and

a root mean square error of 0.155, indicating superior clustering per-

formance. The TOP-K query time is only 4.6 seconds, with a mean

absolute error of 4.5% and a re-identification rate of 7.2%, both sig-

nificantly lower than those of the three comparison models. These

results demonstrate that the proposed approach effectively enhances

both the privacy and availability of smart meter data while maintain-

ing high query accuracy and strong resistance to inference attacks,

offering a practical solution for smart power data privacy protection.

Key Words

Differential privacy; TOP-K query; Time automatic wave neural net-

work; Frequency prediction; K-modes clustering

* Zhejiang College of Security Technology; e-mail:
PeiyuCh@outlook.com

** Zhejinag Oumeilong Meter Co, Ltd., Yueqing, 325600, China; e-
mail: huzhaohuidz@163.com

*** Zhejinag Oumeilong Meter Co, Ltd., Yueqing, 325600, China; e-
mail: tqjn@163.com
Corresponding author: Peiyu Chen

Recommended by: B Rajanarayan Prusty
(DOI:10.2316/J.2026.203-0637)

1. Introduction

With the widespread application of smart grids, smart me-
ters play a crucial role in detailed energy management and
real-time data collection [1]. However, the high-frequency,
fine-grained data they collect can leak user behavior pat-
terns and living habits, leading to serious privacy risks [2]-
[4]. Therefore, how to ensure effective privacy protection
while maintaining data usability has become a key issue
in the field of smart meter data management. In recent
years, Differential Privacy (DP) has received widespread
attention as a core technology for ensuring data release se-
curity. By perturbing the original data, it effectively pre-
vents individual information from being reverse-engineered
[5]. However, traditional DP methods often degrade the
utility of data when dealing with high-dimensional, strong
temporal data from smart meters, and can lead to ac-
curacy loss in tasks such as TOP-K queries [6]. Exist-
ing studies are mainly based on the Laplace mechanism
and the exponential mechanism. While these methods
have achieved certain results with static data or simple
queries, they still face issues such as low accuracy and pri-
vacy budget waste when processing multidimensional tem-
poral data, complex clustering, or TOP-K retrieval tasks
[7]. The Shuffled Differential Privacy (SDP) strategy of
the K-modes clustering algorithm can enhance data indis-
tinguishability and improve privacy protection strength.
When combined with the Temporal Auto-Wave Neural
Network (TANN) for TOP-K queries, it exhibits excel-
lent temporal data awareness, effectively mitigating pri-
vacy leakage risks while ensuring query accuracy. There-
fore, this study proposes a smart meter data protection
framework that combines K-modes clustering-based DP
perturbation with neural network-based TOP-K queries.
The goal is to balance privacy protection and data usabil-
ity, creating an efficient data protection model for smart
meter environments. The main contributions of the study
are as follows:
(1) A smart meter data protection framework that in-

tegrates K-modes clustering, shuffle differential pri-
vacy and TANNTOP-K is proposed. The framework
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achieves joint optimization of data perturbation and
query mechanism through algorithm-level collabora-
tive fusion, taking into account both privacy protec-
tion strength and data availability.

(2) A shuffle differential privacy strategy based on fre-
quency prediction and gradient random response is
designed. By introducing frequency aggregation and
random response mechanism in the perturbation stage,
the utilization efficiency of the privacy budget is im-
proved, and the stability and interpretability of the
clustering results are maintained.

(3) A TANN model with time perception and fluctuation
propagation characteristics is constructed. Through
time window adjustment and fluctuation propagation
mechanism, the model effectively captures the tempo-
ral dependence characteristics of high-frequency meter
data to improve the real-time performance and accu-
racy of TOP-K query, providing new ideas for the de-
sign and application of subsequent privacy protection
technologies.

2. Related Works

DP has become one of the key directions in current data
privacy research, as it protects against individual informa-
tion leakage. Scholars both domestically and internation-
ally have conducted extensive studies on DP. For exam-
ple, Hu and others proposed a protection method based
on federated learning and differential privacy to safeguard
sensitive information in training data of federated learning
models. They applied sparse perturbation for local sparsi-
fication and then used Gaussian noise to further increase
the perturbation, improving model confidentiality and ac-
curacy [8]. Zhang et al., addressing the issue that tradi-
tional privacy algorithms overlook the freshness of data
in privacy protection, proposed an age-related differen-
tial privacy protection framework. This framework char-
acterizes data obsolescence and the relationship between
time-sensitive data, using aging data as a new strategy for
data privacy protection [9]. Huang et al., aiming to solve
the problem that direct transmission of gradient informa-
tion increases the risk of privacy leakage, proposed a pri-
vacy protection method based on gradient tracking. They
added noise to the transmitted information and analyzed
the convergence performance of the step size sequence to
optimize the privacy protection algorithm [10]. TOP-K
queries, which select the top K data items based on scores,
are widely used in querying large-scale sensitive data. For
instance, Zhu and others, addressing the challenge of data
leakage in network management where shared data is vul-
nerable, proposed a differential privacy-based local pro-
tection mechanism. This mechanism searches for TOP-K
flows across multiple independent clients and uses iterative
approximation methods to reduce computational costs, en-
suring the efficiency and practicality of the query method
[11]. Xu et al., in response to the challenge of achiev-
ing efficient multi-user encrypted searches in the Internet
of Things data interaction, proposed a privacy-preserving

dynamic multi-keyword search scheme based on encrypted
cloud data. They queried TOP-K using a specific search
structure and employed a greedy breadth-first search algo-
rithm to achieve sub-linear search, ensuring privacy protec-
tion in the search mode [12]. Kara and Eyüpoğlu proposed
an improved data anonymization algorithm that integrates
an anomaly detection mechanism to solve the problem that
the existing k-anonymity algorithm is difficult to deal with
abnormal data interference, resulting in an imbalance be-
tween privacy protection and data utility. This method
introduces an anomaly factor algorithm based on connec-
tivity to identify outliers in high-dimensional complex data
sets, and optimizes the partitioning strategy based on this
to generate a more balanced equivalence class structure
[13]. In addition, for privacy enhancement mechanisms in
distributed environments, Li et al. proposed a decentral-
ized privacy-enhancing federated learning framework that
is resistant to poisoning attacks. By combining local differ-
ential perturbations with cluster shuffling strategies, they
achieved data security sharing and aggregation optimiza-
tion under privacy budget constraints [14]. This ”shuf-
fling + clustering” mechanism provides direct theoretical
inspiration for the K-modes cluster shuffling differential
privacy proposed in the study. At the same time, Guo et
al. proposed a contextual knowledge-enhanced neural net-
work model in the study of speech recognition in air traffic
control communications, which significantly improved the
recognition accuracy by using dynamic propagation mech-
anisms and temporal dependency modeling [15]. This idea
provides an important reference for the time-series model-
ing and TOP-K query optimization of high-frequency me-
ter data using the time-series automatic wave neural net-
work (TANN) designed by the institute.

As a critical terminal in smart grids, smart meters have
enhanced energy management but also brought significant
privacy risks. In response, many scholars worldwide have
conducted in-depth research. For example, Yan et al.,
addressing the privacy leakage problem when aggregating
data from multiple smart meters, proposed a differential
privacy-based encryption scheme. This scheme uses an
improved homomorphic encryption method for data aggre-
gation and employs a dual-noise distributed technique to
prevent data theft, thus protecting electricity usage data
privacy [16]. Singhal et al., addressing the risk of data
leakage in large amounts of consumer data accumulated
on smart meters, proposed a smart meter data verifica-
tion method based on blockchain technology. They en-
hanced user-side security with blockchain diversity and im-
proved blockchain storage performance through data prun-
ing techniques, achieving privacy protection [17]. Wang et
al., facing privacy protection challenges in electricity theft
detection by distribution system operators, proposed a de-
centralized federated learning framework. This framework
uses threshold homomorphic encryption for serverless pa-
rameter aggregation and employs a decentralized federated
extreme gradient boosting model to enhance performance
and ensure privacy protection [18]. Singh and Kumar, ad-
dressing security and privacy issues in smart meter data,
proposed a security and privacy-preserving data aggrega-
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tion and classification model based on fog and cloud archi-
tecture. They completed data aggregation using fog nodes
and outsourced classification using three machine learning
classifiers in the cloud, achieving privacy protection [19].

In conclusion, existing research has made significant
progress in the field of smart meter data privacy pro-
tection, covering multiple directions. However, for high-
frequency, fine-grained time-series meter data, balancing
usability and privacy under complex query tasks remains
a challenge. Therefore, this study proposes a framework
that integrates K-modes clustering-based SDP with TANN
and TOP-K queries. The aim is to address the shortcom-
ings of existing methods in balancing precise queries and
privacy protection, providing more efficient and practical
technical support for data privacy protection in smart me-
ter environments.

The research’s main contributions and framework are di-
vided into four parts. The first part introduces the research
background and relevant literature, analyzes the current
status of smart meter data privacy protection, and points
out that traditional differential privacy algorithms suffer
from reduced accuracy and privacy budget waste when pro-
cessing high-dimensional, strongly time-series data. The
paper then proposes a smart meter data protection frame-
work that integrates the K-modes clustering shuffle differ-
ential privacy algorithm with the time-autonomous wave
neural network top-K query, balancing privacy protection
and data availability. The second part designs the K-
modes clustering shuffle differential privacy algorithm and
constructs the TANNTOP-K algorithm, elaborating on its
core mechanisms and advantages. The K-modes clustering
shuffle differential privacy algorithm reduces the noise am-
plification effect through cluster compression and shuffle
randomization, enhancing data anonymity and perturba-
tion stability. TANNTOP-K utilizes time series feature
learning to optimize top-K queries for high-frequency me-
ter data. The third part conducts experimental verification
on a typical meter dataset, examining cluster consistency,
privacy budget sensitivity, and top-K query performance.
The results demonstrate that the proposed model effec-
tively balances privacy strength and query accuracy, and
the overall framework outperforms existing algorithms in
terms of accuracy, robustness, and scalability. The fourth
part discusses and summarizes the experimental results,
points out the shortcomings of the model in parameter
adaptability, and looks forward to combining federated
learning with an adaptive privacy budget mechanism in
the future to further improve the generalization and prac-
ticality of the model in dynamic power data scenarios.

3. Data Protection Research Combining DP and
TOP-K Query Algorithms

3.1 K-Modes Clustering SDP Algorithm for Me-
ter Data Protection

With the accelerated deployment of smart grids, smart me-
ters accumulate massive electricity usage data in billing,

scheduling, optimization, and value-added services, sup-
porting the intelligent transformation of the grid and en-
hancing user experience [20]. However, the increase in data
value also brings privacy leakage risks. Compared to tradi-
tional DP mechanisms that rely on centralized processing
and trusted third parties, SDP weakens the risk of single-
point leakage by introducing a shuffling step, improving the
robustness of privacy protection [21]. The data protection
architecture for smart grid data based on this mechanism
is shown in Figure 1.

Figure 1. Data Protection Architecture Based on SDP for
Smart Grids

As shown in Figure 1, the grid center first aggregates
regional electricity data and coordinates resource schedul-
ing. The distribution network and communication layer
work together to achieve efficient resource allocation be-
tween nodes. After the energy is transmitted to the user
side, smart meters collect electricity usage information in
real time. To enhance privacy, user data is locally pro-
cessed with differential perturbation before being uploaded
to the shuffling node, where random rearrangement breaks
the data correlation, thereby meeting the centralized dif-
ferential privacy requirements. This shuffling step, that
is, the core process of the SDP mechanism, mainly in-
cludes local perturbation, random shuffling, and aggrega-
tion calculation. First, the user side locally perturbs the
original meter data x and adds a noise term η where the

noise obeys the Laplace distribution Lap
Ä
∆f
ε

ä
and the am-

plitude is determined by the function sensitivity ∆f and
the privacy budget ε. Secondly, the shuffling stage per-
forms a random scrambling operation on the perturbed
data set, making it difficult to distinguish between any
two adjacent user data in the output space, thereby re-
ducing the risk of single-point leakage. Finally, the ag-
gregation stage uses frequency prediction and a gradient
random response mechanism to calculate the global statis-
tics of the perturbed data to achieve data reconstruction
and feature aggregation under differential privacy condi-
tions. Specifically, A mechanism M is preset to satisfy
(ε, δ) -SDP. For any two adjacent user data sets D and D′,
the output results satisfy the differential privacy condition
S ⊆ Range(M), as shown in Equation (1).

Pr[M(D) ∈ S] ≤ eε · Pr [M (D′) ∈ S] + δ (1)

In Equation (1), S represents the set of output results after
random shuffling of n users, ε is the privacy budget, and δ
is the probability that the output results of adjacent data
sets D and D′ do not satisfy DP. Then, noise is added to
the function f(D), with the noise perturbation shown in

3



Equation (2) [22].

M(D) = f(D) + Lap

Å
∆f

ε

ã
(2)

In Equation (2), ∆f represents the sensitivity of the func-
tion (the maximum variation between adjacent data sets).
However, due to the rough design of the perturbation prob-
ability in the current shuffling differential mechanism, the
algorithm results may fluctuate. Therefore, the study in-
troduces a Frequency-based Shuffling Differential Privacy
(FSDP), which generates noise data using gradient-driven
stochastic response and achieves fast convergence with K-
modes clustering, effectively reducing computational com-
plexity. The process of the K-modes clustering SDP algo-
rithm is shown in Figure 2.

Figure 2. Process of the K-Modes Clustering SDP Algo-
rithm

As shown in Figure 2, the algorithm first groups data
samples based on their distance relationships and calcu-
lates the perturbation probability for each group. Then,
it introduces a Gradient-driven Stochastic Response Strat-
egy (GSRS) to add noise and perform frequency estima-
tion. Next, the K-modes clustering method aggregates
the perturbed data, and the synthetic data set generated
maintains the overall distribution characteristics while ef-
fectively preventing the leakage of individual features, thus

achieving differential privacy protection.Among them, the
distance from the output y to the input value x is used
to partition into m = [G1(x), · · · , Gm(x)] groups, with the
partition Gj(x) depending on the input value. The pertur-
bation probabilities for all groups are calculated as shown
in Equation (3).

∀x ∈ Ω, P (y | x) =


α1(x), y ∈ G1(x)

...

αm(x), y ∈ Gm(x)

(3)

In Equation (3), Ω represents the given domain, perturba-
tion probability α1(x), · · · , αm(x) denotes the probability
distribution in the m groups based on distance partition-
ing. The perturbation probability change between adja-
cent groups remains linear, i.e., the difference in perturba-
tion probability between the groups is constant. αmax (x)
and αmin (x) are the maximum and minimum values of the
perturbation probability, with the exact maximum pertur-
bation probability shown in Equation (4).{

αmin (x) = m−1
(m−1)ω·c−(c−1)

∑m
j=2[(j−1)·|Gj(x)|]

αmax (x) = αmin (x) · c
(4)

In Equation (4), c is a constant, ω is the domain size,
|Gj(x)| is the group size of Gj(x), and ∀j ∈ [1,m] is the
perturbation value. The privacy budget ε upper limit is
then calculated, as shown in Equation (5).

ε = max
x,x′∈Ω

log

Å
c · (m−1)d·c−(c−1)

∑m−1
j=2 [(j−1)·|Gj(x)|]

(m−1)d·c−(c−1)
∑m−1

j=2 [(j−1)·|Gj(x′)|]

ã
(5)

In Equation (5), for any input value x and x′ belonging to
the given domain Ω, the optimal perturbation probability c
is calculated using the parameters ε, Ω, and m. After pro-
cessing with GSRS, the output y in the candidate data set
Cx is derived to obtain the sampling frequency, as shown
in Equation (6).

ϑ (Cx) = ϑ(x)
∑
y∈Cx

P (y | x) +
∑
x′
i ̸=1

ϑ (x′) ·

 ∑
y∈Cx

P (y | x′) +
∑

y∈Cx∩Cx′

P (y | x′)

 (6)

In Equation (6), ϑ(x) is the frequency probability dis-
tribution of x, and ϑ (Cx) is the sampling probability of
y ∈ Cx. Finally, the FSDP algorithm perturbs the elec-
tricity data set and uses the K-modes algorithm to improve
the aggregated expression of the data structure, establish-
ing a K-modes clustering SDP-based meter data protection
method, named KmFSDP. The architecture of this method
is shown in Figure 3.

As shown in Figure 3, the user electricity data is first
input into the GSRS module, where the gradient-driven
stochastic response mechanism performs differential per-
turbation, generating a privacy-protected data set. The
data is then reshuffled to eliminate potential temporal or
identity associations. After receiving the perturbed data,

Figure 3. KmFSDP Operational Framework Diagram

the data processing side performs feature vector-level ag-
gregation estimation, approximating the original data and
generating a synthetic data set that matches the original
data distribution. Finally, the K-modes clustering algo-
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rithm is applied to classify the synthetic data, providing
support for subsequent analysis. The calculation of the
cluster center µk for the synthetic data set D′′ is shown in
Equation (7) [23].

µk = arg max
v∈Dom(xk)

n∑
l=1

γ (xkl = v) (7)

In Equation (7), xkl represents the value of the k-th data
sample on the l-th feature, Dom (xk) is the value range of
the k-th feature, γ (xkl = v) is an indicator function, and
v represents the frequency of a certain value in the l-th
feature across all samples. The most common v is selected
as the value of the clustering center µk for that feature,
avoiding direct exposure of the original user features and
strengthening privacy protection.

3.2 Meter Data Protection Model Combining
KmFSDP and TANN-Based TOP-K Queries

Although the optimized data protection mechanism can
effectively meet privacy needs, it often sacrifices query ef-
ficiency when processing complex time-series data. There-
fore, to balance privacy protection of smart meter data
with efficient key node identification, this research fur-
ther proposes a query architecture that integrates neural
network-based TOP-K query and SDP. This architecture
protects user behavior data from leakage while accurately
identifying key nodes in the power grid and improving
query efficiency. TOP-K queries in smart grids help iden-
tify critical smart meter nodes, enhancing real-time moni-
toring of electric energy flow, load trends, and energy con-
sumption anomalies [24]. Given the high frequency, high
dimensionality, and strong temporal correlation of smart
meter data, this method uses a time-automated wave neu-
ral network structure controlled by differential privacy to
both improve query efficiency and effectively avoid data
leakage risks. In the neural network component implemen-
tation, the TANN structure primarily consists of an input
layer, a wave propagation layer, and an output layer. The
input layer receives frequency feature vectors perturbed
and clustered by the

KmFSDP algorithm, and converts them into a time se-
ries input matrix. In the neural network component im-
plementation, the TANN structure primarily consists of
an input layer, a wave propagation layer, and an out-
put layer. The input layer receives frequency feature vec-
tors perturbed and clustered by KmFSDP and converts
them into a time series input matrix, providing a privacy-
preserving data foundation for subsequent time series mod-
eling. The wave propagation layer calculates the propaga-
tion strength and arrival time between neurons based on
the automatic wave propagation mechanism. The propa-
gation strength P k

λη is determined by the frequency change
rate and the time interval, while the arrival time function
TSλη(t) describes the temporal relationship between sig-
nals from different neurons. The activation threshold Lk

λη

determines the wave triggering condition. When the ac-
cumulated wave strength exceeds the threshold, the wave

firing process is triggered, and energy transfer and informa-
tion diffusion are completed based on the spatial position
parameter Ue

gw and the position update amount Uk
λη. The

output layer performs temporal sorting and screening of
the top-K nodes based on the propagation path’s time win-
dow and spatial position parameter update results, thereby
enabling accurate querying of high-frequency meter data
and identification of key nodes under differential privacy
constraints. The general neural network structure in the
time-automated wave neural network is shown in Figure 4.

Figure 4. General Neuron Structure Diagram

As shown in Figure 4, each neuron g in this structure
receives a series of input wave signals Ue

gw from preceding
neurons, processes them according to interpretation logic,
and extracts effective time windows to determine the time
segments that participate in the current activation judg-
ment. Then, according to the corresponding time storage
window, spatiotemporal location information is mapped.
The cumulative fluctuation intensity is then checked to see
if it meets the threshold, determining whether it enters
the wave generation phase. Finally, neurons that meet the
conditions will output an automatic wave at a certain time.
The automatic wave from neuron g to the current neuron
w is expressed as shown in Equation (8).

Ue
gw =

ß
Null , Valid signal exists
non − Null , No valid signal exists

(8)

In Equation (8), Ue
gw represents the initial excitation unit

of the automatic wave, and its path spans from neuron vg
to vw. Based on this judgment logic, the time required for
the neuron to reach is given in Equation (9).

t = h1

(
Ue
gw

)
= tegw (9)

In Equation (9), tegw represents the arrival time of Ue
gw.

Another form of this automatic wave is Ue
gw =

[
V e
gw, t

e
gw

]
,

where V e
gw represents the e-th element in the set of feasible

paths between neurons vg and vw.h1(·) is the fluctuation
intensity extraction function, affecting the time response
judgment of the signal in the time window. Then, accord-
ing to the time window function TSλη(t), the best time
window is selected, as shown in Equation (10).

TSλη(t) = ctλη (10)

In Equation (10), ctλη represents the effective time win-
dow span between neurons vx and vi at time t. Based on
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the dynamic adjustment mechanism of the time window,
the TANN exhibits good temporal adaptability, enabling
it to effectively capture the temporal characteristics of in-
formation propagation between nodes [25], [26]. Based on
these characteristics, TANN is applied to tasks such as
time-varying network shortest path and TOP-K key node
queries, with the specific process shown in Figure 5.

Figure 5. Shortest Path Search and Key Node Query Di-
agram

As shown in Figure 5, this algorithm, based on the au-
tomatic wave principle, finds the optimal path from the
source node to the target node and retrieves and integrates
all feasible solutions within the best time window, forming
a candidate path set. Then, based on evaluation metrics
for the nodes in the set, the TOP-K optimal solutions for
key nodes are determined. To support fast access and dy-
namic updates of path information, the algorithm uses a
two-dimensional matrix to efficiently store and manage au-
tomatic waves, where each column corresponds to a com-
plete automatic wave record. The expression is given in
Equation (11).

V e
λη = h3

(
Ue
gw

)
=

〈
ves , · · · , veη

〉
Le
λη = TSλη(t)

P e
λη = h4 (TSλη(t)) = 0

(11)

In Equation (11), Le
λη represents the distance between neu-

rons veλ and veη, and P e
λη is the spatiotemporal location pa-

rameter. Then, by detecting whether the cumulative wave
strength P k

λη reaches the threshold Lk
λη, the wave genera-

tion is activated, as shown in Equation (12).

P k
λη ≥ Lk

λη (12)

After satisfying the activation conditions, the neuron en-
ters the wave generation phase and synchronously updates
its corresponding spatial location parameters. The specific
update expression is given in Equation (13).

P̃ k
λη = P k

λη +∆t (13)

In Equation (13), ∆t represents the dynamic update in-
crement of the neuron position parameters. Then, under
the previous constraint conditions, wave signal calculations
are performed based on the temporal parameters between
neural nodes, promoting the formation of new waveforms

and storing them in the automatic wave storage. The new
automatic wave is shown in Equation (14).

Uk
λη = h

(
V k
λη, t

)
(14)

In Equation (14), t represents the current time. Finally,
the automatic wave emitter sends the automatic wave to
subsequent neurons, completing the transmission of fluc
tuations and generating output.” to ”Ultimately, the au-
tomatic wave transmitter transmits wave signals to subse-
quent neurons based on the energy coupling relationship
between neurons, realizing the layer-by-layer propagation
of information and response output, and using the stable
and convergent wave intensity as the sorting basis for TOP-
K queries [27]. This serves as the basis for TOP-K query
sorting. In summary, this research proposes a model that
combines the KmFSDP algorithm with the TANN-based
TOP-K query algorithm, creating a smart meter data pro-
tection model integrating differential privacy and TOP-K
queries, named KSDP-TTK. The specific process architec-
ture is shown in Figure 6.

Figure 6. KSDP Process Flow Diagram

As shown in Figure 6, this model first introduces the
FSDP algorithm, perturbing the original smart meter
data by combining frequency prediction and the gradient-
stochastic response mechanism, enhancing privacy protec-
tion through local shuffling. Then, the K-modes algo-
rithm is used to cluster the perturbed categorical frequency
vectors, constructing the clustering results with optimal
perturbation probabilities, compressing the query space,
and generating efficient indexes. Finally, the TANN-based
TOP-K algorithm dynamically models temporal features,
integrates neuron automatic wave queries, and uses neu-
ral networks for high correlation matching and fast sort-
ing, accurately locating the shortest path TOP-K target
data. This architecture optimizes privacy protection and
query performance in layers through perturbation, cluster-
ing compression, and intelligent querying.

4. Verification of the Meter Data Protection
Model Combining KmFSDP and TANNTOP-
K

4.1 Performance Verification of the K-modes
Clustering SDP Algorithm

In smart meter data, user electricity consumption data was
grouped by time period or usage pattern through cluster-
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Table 1
Experimental Equipment Environment and Specific

Configuration

Item Disposition or Experimental
parameters

Data set REDD
Number of power
consumption by users

6

Power signal frequency 15 kHz
The number of electrical
equipment or circuits

24

Recorded days 18
Operating system Windows 10 64-bit
Experiment condition Intel Core i7-7500UCPU@16G,

NVIDIA GeForce RTX 4060X
Simulation tool Python 3.7.4

ing, generating data clusters rather than individual user-
specific data, achieving a certain level of anonymization.
To verify the superior performance of the KmFSDP algo-
rithm in meter data protection, the study compared it with
three other algorithms: Privacy-Preserving Data Publish-
ing Algorithm ((r, k, ε)-anonymization), Local Differential
Privacy and K-means (LDP-K), and Shuffler-based Dif-
ferential Privacy and K-means (LDP-K), and Shuffler-
based Differential Privacy and K-means (SDP-K) [28]. The
dataset used was the Reference Energy Disaggregation
Data Set (REDD) from MIT, and the experimental equip-
ment environment and specific configuration parameters
are shown in Table 1.

Based on the experimental setup, to verify the cluster-
ing performance of the KmFSDP algorithm under different
privacy budgets, the study compared the normalized intra-
cluster variance (NICV) and the weighted harmonic mean
of precision and recall (F-Measure) for the four algorithms.
The experimental results are shown in Figure 7.

Figure 7. NICV and F-Measure Experimental Results

As shown in Figure 7(a), as the privacy budget in-
creased, the KmFSDP algorithm’s HICV value gradually
decreased to 0.23, significantly outperforming the other
three comparison algorithms. This indicated that un-
der the shuffling and differential disturbance mechanisms,
KmFSDP still maintained strong clustering consistency,
with more robust clustering performance. Figure 7(b)
further shows that the KmFSDP algorithm’s F-Measure
value remained above 0.9 across various budgets, reaching
a maximum of 0.976, demonstrating a clear performance
advantage over other methods. This indicated that the al-

Table 2
Performance Comparison of Four Algorithms on the
REDD Dataset Under Different Privacy Budgets

Privacy
Budget ε

Algorithm Precision
(%)

Recall
(%)

0.5

KmFSDP (Proposed) 95.41 94.26
SDP-K 86.12 82.45
LDP-K 88.54 85.09
(r, k, ε)-Anonymization 90.63 87.74

1.0

KmFSDP (Proposed) 97.84 96.73
SDP-K 89.42 86.57
LDP-K 92.18 90.11
(r, k, ε)-Anonymization 94.65 92.79

2.0

KmFSDP (Proposed) 98.73 97.58
SDP-K 91.08 88.34
LDP-K 93.47 91.82
(r, k, ε)-Anonymization 95.62 94.03

3.0

KmFSDP (Proposed) 99.05 98.12
SDP-K 91.92 89.55
LDP-K 94.22 92.68
(r, k, ε)-Anonymization 96.07 94.56

gorithm achieved efficient anonymous protection without
relying on third-party servers, significantly improving data
privacy. At the same time, the improvement in clustering
quality provided more accurate indexing support for sub-
sequent TOP-K queries. To further evaluate the query
accuracy of each algorithm under different privacy budget
conditions, the study compared the precision and recall of
the four algorithms. The results are shown in Table 2.

Table 2 shows that the KmFSDP algorithm exhibits
optimal performance under various privacy budget condi-
tions. When ε = 0.5, its precision and recall reach 95.41%
and 94.26%, respectively, maintaining high query stability
under strong privacy constraints. As ε increases to 3.0 ,
precision and recall further improve to 99.05% and 98.12%,
consistently significantly outperforming algorithms such
as SDP-K, LDP-K, and ( r, k, ε )-Anonymization. This
demonstrates that KmFSDP achieves an optimal balance
between privacy budget utilization, cluster consistency,
and query accuracy, effectively balancing data availability
and privacy protection strength, and demonstrating supe-
rior robustness and practicality. To further demonstrate
the excellent performance of the KmFSDP algorithm in
handling data while ensuring privacy security, the study
compared the Root Mean Squared Error (RMSE) and fre-
quency prediction accuracy of the four algorithms’ clus-
tering performance. The comparison results are shown in
Figure 8.

Figure 8 RMSE and prediction accuracy results for clus-
tering performance As shown in Figure 8(a), as the pri-
vacy budget increased, the KmFSDP algorithm exhibited
a better convergence trend in clustering error, with its
RMSE value decreasing the most, reaching a minimum
of 0.155 when the budget was 1 , significantly outper-
forming the other three comparison methods. Figure 8(b)
further demonstrates that under expanding data scales,
the KmFSDP algorithm maintained a high prediction ac-
curacy, ultimately reaching 83%, while the other algo-
rithms had accuracy rates below 60% when the sample size
reached 200,000 . These results indicated that KmFSDP
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Figure 8. RMSE and Prediction Accuracy Results for
Clustering Performance

effectively suppressed errors caused by privacy disturbance
while accurately capturing frequency distribution charac-
teristics, ensuring the stability and reliability of meter data
predictions.

4.2 Verification of the Meter Data Protection
Model Combining DP and TANNTOP-K

The study applied the KmFSDP method to perturb meter
data for privacy protection but also aimed to meet spe-
cific query efficiency requirements to address the practical
demands of smart meter data in sensitive privacy scenar-
ios. Therefore, to further evaluate the performance of the
KSDP-TTK model in TOP-K queries and privacy pro-
tection, the study compared it with three other models:
Sparse Vector Technique for TOP-K Query (SVT-TOP-
K), Differentially Private Time-series KNN (DPT-KNN),
and Differential Privacy-based Frequency Prediction (DP-
FP). The dataset used was the smart energy dataset, and
the comparison of the TOP-K query times for the four
algorithms under different data scales is shown in Figure
9.

Figure 9. Query Time Comparison Under Different Data
Scales

As shown in Figure 9(a), as the number of meter nodes
increased, the KSDP-TTK model’s query time remained
low, ultimately taking 4.6s, while the other three compar-
ison algorithms’ query times were 8.5s, 13.9s, and 13.8s,
respectively. Figure 9(b) shows that when the number of
nodes was 1800, the total query time for the four mod-
els was summed, and the time proportions for each model,

from smallest to largest, were 11.27%, 20.83%, 33.83%, and
34.07%. The KSDP-TTK model’s query time was signifi-
cantly lower than the comparison algorithms, demonstrat-
ing its significant TOP-K vertex importance query effi-
ciency advantage in large-scale scenarios. To further verify
the strong privacy protection capabilities of the proposed
method while ensuring query accuracy, the study analyzed
and discussed the Mean Absolute Error (MAE) and Rel-
ative Error (RE) between the original frequency and the
perturbed predicted frequency. The experimental results
are shown in Figure 10.

Figure 10. MAE and RE Results Between Original and
Perturbed Frequencies

As shown in Figure 10(a), as the TOP-K query scale in-
creased, the RE values for all models rose, but the KSDP-
TTK model consistently maintained the lowest relative er-
ror level, with an RE value of 6.9%, significantly lower
than the comparison models, indicating better frequency
fidelity. This showed that the model effectively reduced
the query bias introduced by the privacy mechanism, en-
suring higher query usability. Figure 10(b) further illus-
trates the change trend of MAE values with increasing
query scale. It could be seen that as the query scale in-
creased, the MAE of all models increased to varying de-
grees. The KSDP-TTK model’s MAE value remained the
lowest at 4.5%, far lower than the 36.9%, 54.7%, and 63.2%
values for the comparison algorithms. In conclusion, the
proposed model achieved a good balance between accuracy
and privacy through clustered shuffling differential pertur-
bation, effectively supporting high-quality TOP-K queries
under the privacy protection of smart meter data. To fur-
ther verify the performance of the KSDP-TTK model in
terms of information leakage and protection capabilities,
the study compared the Re-Identification Rate (RIR) of
the four models under large-scale data. The experimental
results are shown in Figure 11.

As shown in Figure 11, as the TOP-K query value in-
creased, the RIR values for the four algorithms showed
varying degrees of increase. Among them, the KSDP-TTK
model consistently maintained the lowest re-identification
rate. When K was 100 , its RIR value was only 5.1%, far
lower than 12.5% for SVT-TOP-K, 18.2% for DPT-KNN,
and 23.7% for DP-FP. When K increased to 25, although
the re-identification risk increased for all algorithms, the
model still controlled the risk at below 10%, with the lowest
RIR value at 7.2%, demonstrating good scalability stabil-
ity. These results showed that during the TOP-K query
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Figure 11. RIR Experimental Results Under Large-Scale
Data

process, the KSDP-TTK model effectively suppressed the
privacy leakage risks caused by an increase in the number
of query targets, providing stronger anonymity and resis-
tance to inference.

5. Conclusion

Due to the continuous collection of high-frequency, fine-
grained electricity consumption information by smart me-
ters, users’ behavior patterns and lifestyle habits can eas-
ily be inferred, leading to significant privacy leakage risks.
Therefore, the study proposed a smart meter data protec-
tion model that integrates the K-modes clustering shuffling
differential privacy algorithm and TOP-K query based
on TANN, aiming to achieve an efficient data process-
ing method that balances both privacy protection and
query performance. Experimental results demonstrated
that the proposed KmFSDP algorithm performed excel-
lently in terms of clustering consistency, with the lowest
HICV value of 0.23 and the highest F-Measure value of
0.976. In terms of clustering performance, its RMSE value
exhibited the largest reduction, dropping to the lowest
value of 0.155 when the budget was 1, and the prediction
accuracy ultimately reached 83%. At the same time, the
KSDP-TTK model’s TOP-K query time was only 4.6 s,
and in terms of query error, its RE value was 6.9% and its
MAE value was 4.5%, achieving a good balance between
accuracy and privacy while effectively supporting high-
quality TOP-K query demands under smart meter data
privacy protection. The model’s RIR value was the low-
est at 7.2%, significantly lower than the three comparison
models, demonstrating stronger anonymity and resistance
to inference. In summary, the KSDP-TTK model success-
fully balanced privacy protection strength and query accu-
racy, possessing strong data perturbation control capabili-
ties and efficient query performance, making it well-suited

to meet the practical query needs of smart meter data in
privacy-sensitive scenarios. However, some parameters of
the proposed model depend on manual settings and lack
adaptive optimization. In the future, a federated learn-
ing framework could be introduced to further enhance the
model’s scalability and practicality in dynamic privacy sce-
narios.
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