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Abstract

In this paper, a multi-objective vehicle path optimisation model

with capacity constraints and time windows is proposed for the

logistics and distribution problem of a single distribution center in a

county city. The model comprehensively considers the objectives of

enterprise cost, distribution efficiency, employee job satisfaction and

customer satisfaction, and designs an improved genetic algorithm

(IGA) incorporating multi-strategy to solve the problem. The IGA

incorporating multi-strategy generates the initial population through

an ant colony algorithm and combines the Bernoulli chaotic mapping

operator, Gaussian operator and Sigmoid operator to improve the

selection, crossover and mutation operations. The method of this

paper is validated on the Solomon dataset and the real data of

An’yue County, respectively. When compared with the comparison

algorithms, the total distance travelled by all vehicles is reduced by

a maximum of 63.10% and 34.37%. At the same time, the remaining

loading margins of the vehicles were reduced by a maximum of

65.29% and 36.34%, respectively, and the maximum and minimum

time difference between the work of the employees (T), was reduced

by a maximum of 78.88% and 37.55%, respectively. The research

work in this paper provides an efficient and intelligent solution for

county urban express delivery and enriches the related field research.
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1. Introduction

With the rapid development of the internet economy
and e-commerce business models, express delivery, as
an essential component of logistics and distribution, has
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increasingly garnered attention from enterprises [1]–[3].
In 2024, the volume of China’s postal industry’s sending
business and the postal industry’s business revenue were
completed at 193 billion pieces and 1.7 trillion yuan, of
which, the volume of express delivery business and business
revenue were completed at 174.5 billion pieces and 1.4
trillion yuan, respectively. The ongoing expansion of e-
commerce continues to drive express delivery demand,
posing heightened demands and challenges for urban
logistics management [4].

The key to solving urban express delivery problems [5]–
[7] lies in reasonably planning the number of vehicles
and their routing paths, known as the vehicle routing
problem (VRP). However, through extensive on-site
investigations and literature reviews, we found that
traditional delivery modes have increasingly exposed
problems, such as inefficiency, high costs, excessive labour
intensity, and unstable service quality, especially when
confronted with substantial market demand and complex
delivery environments. Therefore, exploring a people-
oriented, efficient, and intelligent urban express delivery
mode has significant practical value.

Against this background, this paper conducts a
comprehensive and in-depth study on the VRP in urban
express delivery services. Unlike existing studies focusing
on large cities with multiple distribution centers, we
focus specifically on county-level cities featuring a single
distribution center, highlighting constraints such as vehicle
loading capacity and delivery time windows, defined herein
as the VRP with capacity constraints and time windows
(VRP-CC-TW).

The VRP-CC-TW primarily involves a set of customer
points with their respective demands, service durations,
time windows, vehicle loading capacities, and designated
start and end points. By considering various constraints
and optimisation objectives, the goal is to identify an
optimal solution that fulfills all customer demands.

Specifically, by considering customer satisfaction,
employee well-being, and enterprise distribution costs, we
transform the VRP in the express delivery service domain
into a multi-objective combinatorial optimisation model
with capacity constraints and time windows. The primary
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objectives of this study are to minimise the number of
vehicles used in express delivery, maximise vehicle loading
rate, and reduce total travel distance, while improving
customer satisfaction and employee satisfaction. Higher
employee satisfaction correlates positively with enhanced
employee well-being. To address this, delivery routes and
loading rates for each vehicle must be rationally planned
according to individual customer demand and specific
time-window requirements, while simultaneously balancing
working hours per employee and limiting maximum
working durations.

Essentially, the VRP-CC-TW is an operations research
optimisation problem characterised by multiple constraints
and multiple objectives. Therefore, to effectively solve this
problem, it is necessary to coordinate the relationships
among various objective functions and identify an optimal
solution that satisfies all constraints. Given that the genetic
algorithm (GA) [8]–[10] possesses strong global search
capability, high robustness, and strong adaptability, it
has been widely applied with significant advantages in
solving multi-objective VRP in express delivery. However,
GA also suffers from weak local search ability and
a risk of converging to local optima. Based on these
considerations, this study adopts an improved genetic
algorithm (IGA) incorporating multiple strategies to solve
the multi-objective combinatorial optimisation model with
capacity constraints and time windows.

Through on-site investigations and literature review,
we found that express delivery in county-level cities still
faces the following issues.
1. Due to the unreasonable allocation of customer

points, problems such as low delivery efficiency, high
operational costs, heavy employee workload, and
unstable service quality frequently occur.

2. In actual delivery processes within counties, couriers
primarily rely on personal experience for route
planning, which makes it difficult to ensure consis-
tency and stability in service. Therefore, this study
comprehensively considers enterprise cost, delivery
efficiency, employee job satisfaction, and customer
satisfaction, and constructs a multi-objective VRP-
CC-TW (MO-VRP-CC-TW) model with the goal
of minimising the total cost across these objectives.
Subsequently, we design a multi-strategy IGA to solve
the MO-VRP-CC-TW model. Finally, the proposed
method is validated using both Solomon benchmark
datasets and real-world data.
The main contributions of this work are as follows.

1. We define an MO-VRP-CC-TW model that com-
prehensively considers factors such as enterprise
cost, delivery efficiency, employee working hours, and
customer satisfaction in county-level express delivery.
Specifically, enterprise cost is mainly related to the
vehicle loading rate and the number of vehicles used;
delivery efficiency is associated with the total travel
distance of all vehicles; employee job satisfaction
depends on the balance of working time among vehi-
cles and the maximum working time; and customer
satisfaction is determined by whether the deliveries
are completed within the specified time windows.

2. This paper proposes a multi-strategy IGA. First,
the initial population of the GA is generated using
the ant colony optimisation (ACO) algorithm. Then,
the selection, crossover, and mutation operations are
respectively enhanced by incorporating the Bernoulli
chaotic mapping operator, Gaussian operator, and
Sigmoid operator. The IGA significantly enhances
both the efficiency and solution quality in solving the
MO-VRP-CC-TW problem.

3. This paper validates the proposed method using both
the Solomon dataset and express delivery data from
An’yue County.

2. Related Work

This paper primarily extends and supplements research
on the VRP and provides a comprehensive review of the
existing literature. In 1959, Dantzig and Ramser [11] first
introduced the basic concept of VRP and applied it to
truck dispatching in highway transportation management.
In 1962, Clarke andWright [12] expanded the VRP concept
from truck scheduling to more general linear optimisation
problems in logistics and transportation. Over the decades,
significant progress has been made in the study of multi-
objective VRP. Desrochers et al. [13] investigated VRPs
with time windows and capacity constraints, dividing the
problem into a restricted master problem and subproblems,
and used column generation to iteratively solve them,
achieving reliable solutions even for large-scale instances
with up to 100 customers. Wang et al. [14] developed a
five-objective model for multi-objective VRP in logistics,
but did not consider minimising the differences in working
hours among employees, which may lead to workload
imbalance. Garcia-Najera and Lopez-Jaimes [15] addressed
this issue and proposed a six-objective model to consider
employee work time equity. VRP with time windows
is a widely studied combinatorial optimisation problem
in logistics [16]. To better reflect real-world scenarios,
researchers such as Amiri et al. [17], Iqbals et al. [18],
and Srivastava et al. [19] have explored the problem from
the perspective of soft time windows. As research has
progressed, studies on VRP have become more diverse
and in-depth: Jiang et al. [20], Goeke and Schneider [21],
Amiri et al. [17], and Ren et al. [22] explored VRPs from
the perspective of different vehicle types; Erdogan and
Miller-Hooks [23], Sadati and Çatay [24], and Schneider
et al. [25] investigated VRPs involving new energy vehicles;
Avci and Topaloglu [26] and Li et al. [27] focused
on VRPs with simultaneous pickup and delivery; while
Silva et al. [28] and Wu and Jian [29], [30] examined
dynamic VRPs. In addition, Pillac et al. [31] introduced
the concept of dynamic level and proposed improving
VRPs by enhancing service quality. Li et al. [32], Eydi
and Ghasemi-Nezhad [33], and Kovacs et al. [34] studied
VRPs from the perspective of customer satisfaction. A
special form of VRP, the Open VRP, was first proposed
by Sariklis and Powell [35], and has since been further
investigated by several researchers [36]–[38]. However, most
existing studies focus primarily on enterprise cost, or only
consider customer satisfaction, or a combination of both,
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Table 1
Symbols Explanation

Symbol Explanation

i, j Delivery depot.

n The total number of express delivery stations.

K The total number of vehicles.

v The driving speed.

D Maximum vehicle load capacity

T The maximum working hours.

T0 The initial working hours of the vehicle.

dij The Euclidean distance from delivery station i to delivery station j.

mi The demand at delivery station i.

Ti The service time at the i -th delivery station.

Tki The arrival time of the k -th vehicle at delivery station i.

Ei The earliest expected service start time at delivery station i.

Li The latest expected service start time at delivery station i.

Cki The penalty value for the k -th vehicle serving delivery station i outside the expected service time
window.

c1, c2 The penalty coefficient.

a1, a2, a3, a4, a5 The coefficient of the objective function.

xik The service result of the k -th vehicle at delivery station i.

xk
ij The result of the k -th vehicle traveling from delivery station i to delivery station j.

while largely ignoring employee satisfaction. In practice,
excessive working hours or workloads can reduce employee
motivation, negatively affecting service quality and, in
turn, lowering customer satisfaction with the enterprise.
Therefore, in addition to enterprise cost and customer
satisfaction, it is essential to incorporate employee
satisfaction into the VRP framework to address the real
challenges currently facing express delivery systems.

Over the past decades, researchers have proposed a
wide variety of algorithms to address different variants
of the VRP problem. These algorithms can generally
be categorised into two main types: exact algorithms
and heuristic algorithms. Exact algorithms are typically
represented by methods such as Branch-and-Cut [39]
and dynamic programming [40]. For instance, Dellaert
et al. [41] proposed an improved Branch-and-Cut algorithm
to solve VRPs with time windows and capacity constraints.
Marco [42] further enhanced the work based on Casazza’s
model [43]. Similarly, Dumez et al. [44] and Senna et al. [45]
have also made notable contributions to the development
of exact algorithms in the VRP domain. Compared with
exact algorithms, heuristic algorithms have been widely
applied due to their fast solution speed. Common heuristic
methods include tabu search [46], GA [47], simulated
annealing [48], and neighbourhood search algorithms [49].
Jie et al. [50] and Wang and Zhou [51] investigated

VRPs with capacity and range limitations for electric
vehicles using neighbourhood search strategies. Sadati and
Çatay [24], when solving the green VRP, proposed a hybrid
method combining neighbourhood search with tabu search.
For VRPs with time windows in multi-depot scenarios,
researchers such as Cai et al. [52], Wu and Gao [53], and
Mu et al. [54] applied tabu search, ant colony optimisation,
and GA, respectively. In recent years, discrete orthogonal
moments (DOMs) and their fast computation methods
have been widely applied in fields such as intelligent
computing, image analysis, and signal modelling [55]–
[57]. These developments provide important references for
mathematical modelling, environmental feature extraction,
and real-time performance optimisation in path planning
algorithms. For Krawtchouk, Meixner, and Charlier dis-
crete moments, researchers have proposed fast computation
methods based on Clenshaw recurrence formulas, digital
filter structures, and image block decomposition, enabling
low-latency and high-precision moment feature calcula-
tions. These methods significantly reduce computational
complexity and accumulated numerical errors, allowing
rapid modelling and real-time updates of environmental
features or map information in dynamic environments.
Consequently, they offer valuable insights for local
environment perception and real-time path optimisation in
path planning algorithms. Nie [58] proposed a new value
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iteration-based path planning method called capability
iteration network (CIN). CIN utilizes sparse reward maps
and encodes the capability of the agent with state-action
transition probability, rather than a convolution kernel in
previous models. As a representative heuristic algorithm,
GA is known for its strong global search capabilities in
multi-objective optimisation and is thus widely used to
solve VRPs. Researchers such as Liu et al. [10], Amiri
et al. [17], Srivastava et al. [19], Pillac et al. [31], and
Eydi and Ghasemi-Nezhad [32] have made improvements
and optimisations to traditional GA approaches, achieving
notable results in solving VRP-related problems. There-
fore, this paper also adopts GA for solving the VRP, while
addressing its inherent weakness in local search capability
through targeted improvements and optimisation.

In this study, we employ an IGA that integrates
multiple strategies to solve the MO-VRP-CC-TW model.
Initially, we construct a multi-objective model that
comprehensively considers key factors, such as enterprise
costs, delivery efficiency, customer satisfaction, and
employee job satisfaction. Subsequently, we enhance the
traditional GA from four critical aspects: initial population
generation, selection mechanisms, crossover operations,
and mutation processes. The IGA is then applied to
solve the multi-objective model, enabling the simultaneous
optimisation of multiple objectives in a single execution to
derive a combined optimal solution. Finally, we conduct
experimental validations using both the Solomon dataset
and real-world data from An’yue County to evaluate the
effectiveness and practicality of the proposed method. The
results demonstrate the robustness and applicability of our
approach in addressing complex vehicle routing problems
under various constraints and objectives.

3. MO-VRP-CC-TW Model

3.1 Problem Description and Assumptions

In a given region, there exists a certain number of
express delivery stations, each with specified demand
for goods, service time, expected delivery time windows
(including the earliest and latest allowable delivery times),
and geographical coordinates. The express delivery center
supplies the required goods to these stations, and vehicles
are responsible for delivering the goods to the customer
points. Each vehicle departs from the distribution center,
visits the assigned customer points to complete delivery
tasks, and finally returns to the center. Under a set of
constraints, the objective is to minimise the total delivery
cost, maximise efficiency, balance employee working hours,
and achieve the highest level of customer satisfaction.

Therefore, the following eight assumptions are estab-
lished at the beginning of the study.
1. The coordinates of one distribution center and

multiple express delivery stations are known in
advance.

2. All vehicles must depart from the distribution center
and return to it after completing their deliveries,
thereby forming a closed loop.

3. Each express delivery station can only be served by
one vehicle, and the demand at each station does

not exceed the maximum loading capacity of a single
vehicle.

4. All vehicle types are the same, have the same load
capacity, and travel at a uniform speed.

5. The service time and time window for each delivery
station are known and remain unchanged.

6. This study adopts soft time windows, meaning that
arriving earlier or later than the expected time
window at a delivery station will incur a time penalty.

7. All vehicles have a fixed and identical departure time
from the distribution center each day.

8. Unexpected events such as vehicle breakdowns, traffic
congestion, road closures, and construction are not
considered during the delivery process.

3.2 Symbols and Model Formulation

Based on the problem description and assumptions, the
MO-VRP-CC-TW model in this paper can be described
as: k vehicles depart from a central depot to serve n
delivery points. In the entire model, the distribution center
warehouse is represented by 0, the set of nodes representing
the delivery stations is denoted as N = {1, 2, 3, · · · , n},and
the set of all vehicles is denoted as K = {1, 2, 3, · · · , k}.
The list of symbols used in this paper is shown in Table 1.

The MO-VRP-CC-TW model in this paper can be
specifically represented by the following mathematical
formulas:

Decision variables:

xik =

1, node i is served by vehicle k

0, else
(1)

xk
ij =

1, The k − th vehicle travels from node i to node j

0, else
(2)

mi, Cki, Ti ≥ 0. (i ∈ N, k ∈ K) (3)

Objective function:

minF = a1z1 + a2z2 + a3z3 + a4z4 + a5z5 (4)

Constraints:

z1 =

K∑
k=1

n∑
i=0

n∑
j=0

dijx
k
ij (5)

z2 =

K∑
k

ZkD (6)

zkD = 1−

n∑
i=1mi

n∑
j=0x

k
ij

D
∗ 100% (7)

z3 =

K∑
k=1

n∑
j=1

xk
0j (8)

z4 = max{zkt} −min{zkt} (9)

zkt =
zkl
v

+

n∑
i=0

n∑
j=0

Tix
k
ij (10)

zkt ≤ T (11)
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zkl =

n∑
i=0

n∑
j=0

dijx
k
ij (12)

z5 =

K∑
k=1

n∑
i=1

Cki (13)

Cki =


0 Ei ≤ Tki ≤ Li

xik (Ei − Tki) ∗ c1 Tki ≤ Ei

xik (Tki − Li) ∗ c2 Li ≤ Tki

(i ∈ N, k ∈ K) (14)

n∑
i=1

mi

n∑
j=0

xk
ij ≤ D; (k ∈ K) (15)

n∑
j=0

xk
ij =

n∑
j=0

xk
ji ≤ 1; (i ∈ N, k ∈ K) (16)

K∑
k=1

n∑
j=0

xk
ij = 1; (i ∈ N) (17)

K∑
k=1

∑
i,j∈S

xk
ij ≤ |S| − 1; (S ⊆ N, 2 ≤ |S| ≤ n− 1, k ∈ K) (18)

Equations (2)–(3) define the range and value con-
straints of decision variables. In (4), F represents the
fitness function, which is formulated as a weighted sum
of five sub-objectives. The coefficients a1 to a5 are the
objective weights used to balance the relative importance
of each optimisation goal. In (6), Z1 denotes the total
travel distance of all vehicles. (7), (8) define Z2, the
total remaining loading capacity of all vehicles, where
ZkD represents the remaining capacity ratio of vehicle
k. Equation (9) defines Z3, the total number of vehicles
used. Equations (10) and (13) describe Z4, which reflects
employee job satisfaction. Here, Zkt denotes the total
working time of vehicle k, including both travel time and
customer service time. Each vehicle’s working time must
not exceed the maximum allowed working time T, ensuring
a reasonable employee workload. Zkl denotes the travel
distance of vehicle k. Equations (13) and (14) define the
time window penalty function Cki, which penalises vehicles
that arrive outside the customer’s specified time window,
including both early and late arrivals. Z5 represents
customer satisfaction and is calculated as the total time
window deviation penalties across all service points–the
smaller the value, the better the adherence to customer
expectations. Equation (16) includes the vehicle capacity
constraint D, ensuring that the load delivered by each
vehicle does not exceed its maximum capacity. Equations
(17)–(18) specify that each delivery station can only be
served by one vehicle, and that each vehicle must start and
end at the distribution center.

4. Multi-strategy Integrated Genetic Algorithm

The urban express delivery routing optimisation problem is
a non-deterministic polynomial (NP) problem. Therefore,
considering the characteristics of the model and practical

applications, this paper will use a GA with strong
robustness and fast solution speed to solve the problem. In
the 1970s, John Holland first proposed the GA, whose core
concept is to find the optimal solution to a problem by
simulating the process of natural selection. In this process,
the population represents all possible solutions, and each
individual corresponds to a specific solution. In a GA,
the initial population, selection, crossover, and mutation
operations are critical to the performance of the algorithm.
In the urban express delivery routing optimisation process,
to avoid the traditional genetic algorithm getting stuck in
local optimal solutions during the search process, this paper
proposes a multi-strategy IGA. Specifically, this paper first
uses the ACO algorithm to generate the initial population
for the GA. Then, the Bernoulli chaotic mapping operator,
Gaussian operator, and Sigmoid operator are used to
optimise the selection, crossover, and mutation operations,
respectively.

4.1 Initial Population

The initial population of a GA is usually generated
randomly, but this method has difficulty in simultaneously
ensuring both the quality and diversity of the population.
Therefore, this paper uses the ACO algorithm to create the
initial population. ACO simulates the foraging behaviour
of ants to perform path optimisation. In this process, ants
release pheromones along the paths they traverse, and the
concentration of pheromones changes depending on the
path length and the number of ants. Shorter or better paths
accumulate more pheromones, thereby attracting other
ants to select these paths. This selection mechanism further
reinforces the pheromone concentration. As a result, ACO
can maintain a balance between the diversity and quality
of the initial population during the selection process, while
also obtaining better and more efficient structures and
outcomes.

The probability that the k -th ant moves from its
current position i to the next position j at time t in ACO
is given by the following (19):

p (t) =


[τij(t)]

α[ηij(t)]
β∑

[τij(t)]
α[ηij(t)]

β j ∈ Ak

0 j /∈ Ak

(19)

In (19), τij(t), represents the pheromone level on the
feasible path between nodes i and j at time t ; ηij(t),
represents the distance factor at time t ; Ak, represents the
set of feasible next points for the k -th ant; and α and
β represent the weights of the pheromone and distance
factors, respectively.

The pheromone concentration at time t+1 is calculated
using the following (20):

τij (t+ 1) = (1− ρ) τij (t) +
∑

m
k=1∆τkij (t, t+ 1) (20)

∆τkij (t, t+ 1) =


Q
Lk

The k − th ant

0 Others
(21)
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Figure 1. Adaptive crossover operation.

Figure 2. Adaptive mutation operation.

In (20) and (21), ρ,Q, and Lk represent the pheromone
evaporation factor, a constant, and the path length of the
k -th ant, respectively.

4.2 Encoding and Decoding Scheme of the Initial
Solution

In the proposed algorithm, the processes of encoding
and decoding play a crucial role. To effectively represent
the delivery routes, a natural number encoding method
is adopted, where each individual’s gene sequence is
represented by the nodes along the route. Specifically,
the length of the encoded path is n+k -1, where n is
the number of customer nodes and k -1 denotes the route
separators used to distinguish different vehicle segments.
Each encoding instance is mapped to a specific vehicle
routing path through permutations of natural numbers.

For example, given the encoded sequence: 0, 3, 1, 5,
0, 2, 4, this encoding represents the routes of two vehicles.
The route for vehicle 1 is 0→3→1→5→0, and the route for
vehicle 2 is 0→2→4. This encoding effectively represents
the transportation paths of multiple vehicles and provides
a foundation for subsequent optimisation algorithms.

The decoding process is carried out in the following
steps.
1. Path Division: The encoded sequence is divided

into different path segments based on path sep-
arators, identifying the specific routes for each
vehicle.

2. Constraint Check: Each path segment undergoes
verification of constraint conditions. First, the
capacity constraint is checked to ensure that the
transportation capacity for each vehicle satisfies∑

mi ≤D. Next, the time window constraint is
verified to ensure Ei ≤ Tki ≤ Li.

3. Path Adjustment: If a path does not meet
the above constraints, the order of the path
segments is adjusted, or idle vehicles may be
inserted to rearrange the route, thus fulfilling
the optimisation requirements of the overall
schedule.
Through the above encoding and decoding process,

the algorithm in this paper can effectively generate
transportation solutions that comply with practical
constraints and perform further optimisation to solve the
multi-vehicle routing problem.
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4.3 Selection Operation

To improve the path optimisation effect of urban express
delivery, this paper introduces Bernoulli chaotic mapping
into the genetic algorithm, utilising its randomness,
ergodicity, and nonlinearity to enhance the selection
operator. In the selection process, the effectiveness of the
selection operation is strengthened by introducing the
Bernoulli chaotic mapping formula, as shown in (22) and
(23):

B(t) =

 B(t−1)

1−η , B(t) ∈ (0, 1− η]

B(t−1)−1+η
η , B(t) ∈ (1− η, 1)

(22)

C(t) = int
(
N ×B(t)

)
+ 1 (23)

In (22) and (23), η is the control parameter, N
represents the number of individuals in the population,B(t)

denotes the Bernoulli chaotic mapping random number
generated after the t-th iteration, and C(t) refers to the
index of the individual in the selection operation, where
the int() function is used to round the value. The initial
value of the Bernoulli chaotic mapping is a random number
uniformly distributed within the range (0,1).

The GA performs the selection operation using a
binary random tournament. The specific steps are as
follows.

Step 1: Use the Bernoulli chaotic mapping formula to
generate two random numbers, select the two individuals
corresponding to these indices from the population, and
compare their fitness values. The individuals with the
higher fitness will be inherited into the next generation
population.

Step 2: Repeat Step 1 until N individuals are obtained
for the next generation population.

4.4 Adaptive Crossover Operation

In GA, the crossover operation generates new individuals
by exchanging parts of the genes between two parent
individuals. The selection of crossover probability is crucial
for the speed of population evolution. In the early stages,
a higher crossover probability can effectively promote the
rapid evolution of the population, while in the later stages,
a lower crossover probability helps preserve the genes
of the best individuals. Therefore, during the evolution
process, the crossover probability needs to be dynamically
adjusted to achieve adaptive optimisation. In this paper,
the fitness of individuals is calculated using (24), and then
the Gaussian operator in (25) is used to adaptively adjust
the crossover probability in a dynamic manner.

pc int =


pc l, f m = f a

pc h∗(f m−f)
f m−f a , f ≥ f a, and, f m ̸= f a

pc h, f < f a, and, f m ̸= f a

(24)

pc = pc int ∗ e−(
t
T )

2

(25)

In (24) and (25), the minimum and maximum values
of crossover probability are denoted as pc l and pc h ,

respectively. The maximum and average fitness values
correspond to f m and f a, while t and T represent the
current generation and the total number of generations,
respectively.

The specific crossover operation is shown in Fig. 1.
Two parent individuals (e.g., gene sequences in an array)
will exchange parts of their sequences according to a
certain crossover probability. The process depicted in
the figure involves partial gene sequences of two parent
individuals (such as 1, 2, 4, 6, 8, 10... and 1, 2, 3,
5, 7, 10...) being swapped to generate new individuals,
thus driving the evolution of the population. This process
continuously adjusts the crossover probability, updating
the population at the right moments to achieve a better
search performance.

4.5 Adaptive Mutation Operation

In GA, the mutation operation involves modifying part
of an individual’s genes, such as deletion, exchange,
or mutation, to generate new gene segments and
form entirely new individuals. The magnitude of the
mutation probability directly influences the diversity of
the population. In the early stages of the algorithm, since
there is a large individual variation in the population, using
a lower mutation probability can accelerate the evolution
process. In later stages, as the population’s variation
gradually decreases, individuals are more likely to fall
into local optima. At this point, increasing the mutation
probability can enhance the population’s diversity and
help the algorithm escape from local optima. Therefore,
the mutation probability needs to be dynamically and
adaptively adjusted according to the evolution process.
In this paper, the individual fitness values are calculated
using (26), and then the mutation probability is adaptively
adjusted using the Sigmoid operator in (27) to meet the
demands of different stages.

pm int =


pm l, f m = f a

pm h∗(f m−f)
f m−f a , f ≥ f a, and, f m ̸= f a

pm h, f < f a, and, f m ̸= f a

(26)

pm = pm int ∗ 1

1 + e−
t
T

(27)

In (26) and (27), pm l and pm h, represent the
minimum andmaximum values of the mutation probability,
respectively.

The mutation operation randomly selects certain
positions in the gene sequences of some individuals to make
changes (such as flipping the values of certain genes or
swapping positions), which helps to increase the diversity
of the population. The process shown in Fig. 2 illustrates
the gene exchange between two individuals. For example,
the values 12 and 15 in the array are swapped to generate
new individuals.
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Figure 3. The algorithm flowchart of this paper.

4.6 The Algorithm in This Paper.

In this paper, for the GA, we first use the ACO algorithm
to generate the initial population. Then, we incorporate the
Bernoulli chaotic mapping operator, Gaussian operator,
and Sigmoid operator into the selection, adaptive crossover,
and adaptive mutation operations, respectively. Addition-
ally, the fitness of the GA is determined by considering
distance, remaining load rate, number of vehicles, employee
satisfaction, and time windows (customer satisfaction).
The final result is the IGA based on multiple strategies.
The algorithm’s principle is illustrated in Fig. 3.

5. Experimental Analysis

To verify the effectiveness and practicality of the multi-
strategy integrated IGA proposed in this paper in solving
MO-VRP-CC-TW, we conducted tests from two aspects:
one using the Solomon dataset and the other employing
real delivery data from An’yue County’s express delivery
company.

5.1 Experimental Environment and Parameter
Settings

The experiments were conducted using MATLAB R2022a
on a Windows 11 system with an i7-12700H processor.
The parameter settings in this study were primarily
based on references [9], [10], [17]–[19], [31], [32], with
optimisation objectives including total travel distance of all
vehicles, remaining vehicle load rate, number of vehicles,
employee work satisfaction, and customer satisfaction.
These parameters were further fine-tuned through multiple

Table 2
Parameter Settings

Parameter Setting

α 1

β 2

ρ 0.5

T 1,000

pc l 0.7

pc h 0.9

pm l 0.1

pm h 0.3

a1 0.2

a2 0.2

a3 0.1

a4 0.3

a5 0.2

optimisation runs based on actual results. The final
parameter settings used in this study are shown in Table 2.

5.2 Solomon Dataset Test

In order to verify the superiority of the proposed
algorithm in the delivery process, we compared it with
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Figure 4. Scheduling diagram of dataset R101; (a) GA; (b) IGA; (c) Q-learning; and (d) This paper.

Figure 5. Scheduling diagram of dataset R112; (a) GA; (b) IGA; (c) Q-learning; and (d) This paper.

Figure 6. Scheduling diagram of dataset R201; (a) GA; (b) IGA; (c) Q-learning; and (d) This paper.
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Figure 7. Scheduling diagram of dataset RC101; (a) GA; (b) IGA; (c) Q-learning; and (d) This paper.

Figure 8. Scheduling diagram of dataset RC108; (a) GA; (b) IGA; (c) Q-learning; and (d) This paper.

Figure 9. Scheduling diagram of dataset RC208; (a) GA; (b) IGA; (c) Q-learning; and (d) This paper.
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Table 3
Comparison and Analysis of Different Algorithms

Different Algorithms Different Datasets GA IGA Q-learning This Paper

R101 Total distance 2549.695 1374.4271 897.26 940.7253

Total remaining capacity 0.413 0.326 0.271 0.272

Total F value 343.74 323.26 310.63 307.17

Total T difference 30.12 16.2 19.28 12.63

runtime 2.01 3.26 63.79 2.58

R112 Total distance 2557.2574 1299.9467 947.9831 957.5929

Total remaining capacity 0.503 0.317 0.22 0.218

Total F value 302.65 286.67 280.66 283.53

Total T difference 30.27 15.54 22.23 12.83

runtime 2.27 3.58 65.57 2.69

R201 Total distance 2541.5237 1148.8653 1011.853 943.0911

Total remaining capacity 0.465 0.332 0.253 0.281

Total F value 379.04 367.18 368.23 365.45

Total T difference 17.88 16.22 19.26 12.12

runtime 1.98 3.16 63.52 2.42

RC101 Total distance 2696.3694 1430.3173 1154.1785 1104.5579

Total remaining capacity 0.397 0.272 0.21 0.182

Total F value 215.46 176.82 170.41 166.21

Total T difference 40.57 11.42 15.64 8.57

runtime 2.22 3.03 65.53 2.37

RC108 Total distance 2054.0456 1339.5683 1149.5261 1129.6999

Total remaining capacity 0.478 0.363 0.248 0.256

Total F value 177.32 155.69 155.16 152.75

Total T difference 37.48 14.62 16.85 11.55

runtime 2.34 2.98 65.57 2.44

RC208 Total distance 2597.6872 1398.9098 1112.0232 1091.8635

Total remaining capacity 0.412 0.299 0.23 0.143

Total F value 203.11 208.43 196.84 189.36

Total T difference 24.72 35.12 20.54 9.95

runtime 2.21 3.15 64.96 2.63

the GA, IGA [10] and Q-learning Algorithm, and tested
them on the Solomon dataset. The Solomon dataset
provides information on customer points, demand, time
windows, and vehicle capacities of different scales. To avoid
randomness and errors in the calculations, we randomly
selected 6 datasets for testing, including R101, R112, R201,
RC101, RC108, and RC208. The scheduling results are
shown in Figs. 4–9.

From the scheduling results shown in Figs. 4–9, we can
observe that the paths planned by the proposed method
are clearly superior to the results obtained by GA, IGA,
and Q-learning, and the assigned tasks are more balanced.
By analysing the results in Figs. 4–9, we can obtain the
data results shown in Table 3.

Based on the data presented in Table 3, the method
proposed in this paper exhibits significant advantages
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over the GA, IGA, and Q-learning algorithms across
multiple key metrics in the R101, R112, R201, RC101,
RC108, and RC208 datasets. Specifically, the proposed
approach achieves remarkable performance in reducing
total vehicle travel distance, minimising residual loading
capacity, optimising the objective function value (F), and
narrowing the difference in employee working hours (T).

In terms of total vehicle travel distance, the proposed
method reduces it by up to 63.10%, thereby substantially
enhancing. For residual loading capacity, it achieves a
maximum reduction of 65.29%, optimising it to 0.143
and consequently lowering enterprise costs in a significant
manner. In the aspect of differences in employee working
hour (T), the method achieves a maximum reduction
of 78.88%, with the shortest time disparity reduced to
8.57, significantly improving employee satisfaction and
happiness. Furthermore, the objective function value (F)
is improved by up to 22.85%, validating the superiority
and stability of the proposed solution in addressing courier
delivery problems.

Although the GA algorithm has certain advantages
in runtime, its solution quality is relatively/comparatively
inferior. In contrast, the proposed method delivers higher-
quality solutions with only a marginal increase in
computational time, maintaining high efficiency alongside
significantly improved solution quality and stability. This
fully demonstrates its practicality and feasibility in real-
world applications.

5.3 An’yue County Dataset Testing

In order to further verify the applicability of the algorithm
in real scenarios and the reliability of solving practical
problems, this study is based on field research, and 50
representative stations of express delivery enterprises in
An’yue County are selected to test the actual delivery
data. An’yue County is one of the world’s five major
lemon producing areas and China’s only lemon commodity
production base county, An’yue County’s e-commerce
market has a high degree of activity and growth potential,
which provides rich application scenarios and data support
for courier delivery business. In 2023, the e-commerce
transaction volume in Anyue County reached 14.7 billion
yuan, Online retail sales amounted to 3 billion yuan.Among
these, the online retail sales of agricultural products
reached 1.9 billion yuan. In An’yue County, the daily
average volume of completed express deliveries reaches
100,000 shipment, while approximately 30,000 shipments
are collected daily.

The delivery area selected for this case study (fig. 5)
covers multiple regions with high courier demand, including
main roads in urban areas, surrounding residential areas,
schools, and supermarkets. The road network structure
in this region is relatively well-developed, featuring clear
distribution of primary and secondary roads, providing
a certain level of traffic capacity. However, peak hours
during the morning and evening often experienced local
road congestion, potentially leading to delivery delays and
path uncertainties. Delivery tasks are mainly concentrated
between 7:30 a.m. and 12:30 p.m., imposing higher

Figure 10. An’yue county express delivery stations.

requirements on the timeliness and accessibility of path
planning. The fleet consists of standard light-duty trucks
with uniform loading capacity. To improve operational
efficiency and rout accuracy, some vehicles are equipped
with electronic navigation and mobile terminals, enabling
route tracking and on-site information feedback.

Guided by a people-oriented approach, this case
study pays particular attention to the workload and time
equity of delivery personnel. Given the characteristics
of county-level express delivery–namely, “many points,
small volumes, and strong time sensitivity”–unreasonable
task allocation can easily lead to excessive workload
for certain employees, negatively affecting service quality
and employee satisfaction. Therefore, in optimising route
planning, it is necessary not only to meet basic constraints
such as delivery time windows and vehicle capacity but also
to balance the number of delivery tasks and working hours
assigned to each employee through the model. This ensures
a more equitable and reasonable workload distribution,
thereby achieving a multi-dimensional optimisation of
enterprise efficiency, customer experience, and employee
well-being. The distribution of delivery stations is shown
in Fig. 8, and the corresponding data are provided in
Table 4. Deliveries begin at 7:30 a.m. each day and must
be completed by 12:30 p.m.

We compared the proposed algorithm, GA, IGA, and
Q-learning using the An’yue County dataset, and the
scheduling results are shown in Fig. 11.

From the scheduling results in Fig. 11, we can observe
that the scheduling outcomes of the proposed method
are significantly better than those of the comparison
algorithms. By analysing the results in Fig. 11, we can
obtain the comparison of the remaining load capacity for
each vehicle, as shown in Fig. 12. Additionally, we can
derive the data results in Table 5.

From the vehicle load capacity comparison chart in
Fig. 12, it can be seen that the proposed method signifi-
cantly reduces the remaining load capacity of each vehicle,
effectively improving the vehicle load rate and thus reduc-
ing enterprise costs. Through the data results in Table 5,
we can observe that the total travel distance of all vehicles
decreased by up to 34.37%, thereby effectively improving
the efficiency of courier delivery. The remaining load
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Table 4
An’yue County Dataset

NO. Longitude Latitude Service time Demand Time Window

0 105.3632055 30.1081326 \ \ \

1 105.3424406 30.10239359 10 85 7:30-10:30

2 105.345631 30.10291643 10 75 9:30-12:30

3 105.3415682 30.10818276 13 85 8:00-12:00

4 105.3484825 30.09997457 11 80 9:30-11:30

5 105.348011 30.10558785 10 85 8:30-11:00

6 105.3508747 30.10077742 15 75 9:30-12:00

7 105.3445163 30.11011808 10 75 9:30-12:30

8 105.3421152 30.11186178 12 80 8:00-11:30

9 105.3415054 30.11305006 10 35 7:00-12:30

10 105.348025 30.10010295 10 40 7:30-10:30

11 105.3302693 30.09982532 13 40 10:30-12:30

12 105.3406154 30.11433603 10 45 8:30-10:30

13 105.3386914 30.11597967 10 35 8:30-10:00

14 105.3301903 30.09344032 10 45 9:30-11:30

15 105.3374156 30.11110263 12 40 7:30-11:30

16 105.3284536 30.10635842 10 40 8:30-10:30

17 105.3457998 30.10002763 14 45 8:30-11:30

18 105.3632055 30.1081326 10 5 8:30-11:30

19 105.3357411 30.09575439 15 10 9:30-12:30

20 105.3411335 30.11311544 10 15 10:00-11:30

21 105.353819 30.09709074 15 5 9:30-11:30

22 105.3586008 30.10056318 10 15 8:30-12:00

23 105.3573547 30.10373284 10 5 10:30-12:30

24 105.3437851 30.10777451 12 15 10:00-12:30

25 105.3326587 30.10479079 10 5 8:30-11:30

26 105.3410403 30.10515438 14 30 9:30-10:30

27 105.3507059 30.10853976 10 35 8:30-12:30

28 105.3361022 30.10409996 10 30 8:00-11:30

29 105.3460905 30.10542266 10 35 7:30-11:30

30 105.360539 30.09990127 10 30 7:30-12:30

31 105.3566229 30.09814943 13 35 10:30-12:30

32 105.3593097 30.11161178 10 30 7:30-12:30

33 105.3638637 30.11481663 10 25 10:30-12:30

34 105.3584131 30.11449417 10 35 8:30-11:00

35 105.3338471 30.10060224 14 85 7:30-12:30

36 105.332985 30.10321708 14 85 8:30-11:30

37 105.3372583 30.10599673 10 82 10:30-12:00

38 105.3390336 30.1015712 10 80 7:30-10:30

39 105.3368875 30.09909541 15 80 8:30-12:30

40 105.3424301 30.10349438 10 85 10:30-12:30

41 105.3299153 30.10291894 13 75 8:00-12:00

42 105.3287796 30.10469926 10 80 9:30-10:30

continued
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NO. Longitude Latitude Service time Demand Time Window

43 105.334876 30.10525252 11 85 10:00-11:30

44 105.3399426 30.1083745 11 82 7:30-12:30

45 105.3421202 30.11008055 10 82 10:30-11:30

46 105.3401185 30.11095486 11 80 10:00-11:30

47 105.3458041 30.11179572 10 45 8:30-10:30

48 105.3480201 30.11403558 13 5 8:30-10:30

49 105.3506362 30.11305457 10 12 9:30-12:30

50 105.34901 30.10948087 11 35 8:30-10:30

Figure 11. An’yue county scheduling map; (a) GA; (b) IGA; (c) Q-learning; and (d) This paper.

Figure 12. Comparison of vehicle load residuals.

capacity of all vehicles decreased by up to 36.34%, reducing
delivery costs and enhancing the company’s competitive-
ness. The maximum and minimum time differences (T) in
employees’ work hours decreased by up to 37.55%, better

balancing their working hours and improving employee
satisfaction and well-being. The overall objective function
F value increased by 7.63%, which effectively proves that
the proposed method has high reliability and versatility
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Table 5
Algorithm Data Analysis

An’yue County GA IGA Q-learning This Paper

Total distance 521.947 492.3683 368.7822 342.5259

Total remaining capacity 0.443 0.316 0.277 0.282

Total F value 146.67 135.67 136.51 135.48

Total T difference 30.04 20.38 20.63 18.76

in solving courier delivery problems in county-level
cities.

6. Summary

This study focuses on the VRP in county-level urban
express delivery. To address existing issues in traditional
delivery practices–such as low efficiency, high costs, heavy
employee workloads, and unstable service quality–a MO-
VRP-CC-TW model is proposed. The model comprehen-
sively considers multiple objectives, including enterprise
cost, delivery efficiency, employee job satisfaction, and
customer satisfaction. A multi-strategy IGA is designed
to solve this model. Through experiments on both the
Solomon benchmark dataset and real-world data from
An’yue County, the proposed method demonstrates sig-
nificant advantages in multi-objective optimisation, path
planning, and practical applicability. The results show that
the proposed multi-strategy IGA effectively reduces total
travel distance, improves vehicle loading rates, mitigates
imbalances in employee working hours, and significantly
enhances customer and employee satisfaction. Moreover,
the IGA outperforms traditional genetic algorithms and
other comparative methods in terms of optimisation
speed and global search capability, demonstrating strong
robustness and adaptability. In particular, tests in real-
world scenarios reveal the high practical value of the
proposed method in reducing enterprise operational costs,
improving delivery efficiency, and enhancing employee well-
being. The proposed model assumes a static distribution
environment, without considering the influence of dynamic
factors such as real-time traffic conditions, road congestion,
or unexpected events. Meanwhile, in modelling employee
satisfaction, the focus is primarily placed on the balance of
working hours, while other multidimensional factors – such
as workload intensity, task complexity, and mental fatigue
– have not yet been fully incorporated. Future research
could further extend the model to adapt to dynamic
environments and integrate human-centered value criteria.
Finally, although the experimental validation covers
both standard benchmark datasets and real-world case
studies, the testing scale remains relatively limited. For
large-scale node networks, multiple distribution centers,
or multi-objective and multi-constraint scenarios, the
scalability and real-time computational efficiency of the
algorithm still require further enhancement. In future
work, we will incorporate employee fatigue considerations
by setting reminders for maximum continuous working
hours, thereby further improving job satisfaction and

happiness. Additionally, we will introduce advanced multi-
objective metaheuristic algorithms such as NSGA-II and
MOEA/D for comparative analysis to comprehensively
verify the superiority of our method in multi-objective
optimisation. We also plan to integrate big data, dynamic
traffic information, and unexpected events to enhance the
algorithm’s real-time performance and adaptability.
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