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Abstract

In this study, we propose a hybrid TCN-DBN architecture for proba-

bilistic short-term load forecasting (STLPF) and dynamic risk quan-

tification in power systems. Traditional deterministic forecasting

methods fail to capture load uncertainty and provide actionable risk

insights. By integrating the temporal dependency modeling capabil-

ity of temporal convolutional networks (TCN) with the deep prob-

abilistic representation of deep belief networks (DBN), our frame-

work achieves joint optimization of forecasting accuracy and uncer-

tainty quantification. The TCN module employs causal and dilated

convolutions to extract long-range spatio-temporal features, while

the DBN module generates probabilistic load distributions through

Bayesian inference. Experimental results on the EUNITE dataset

demonstrate that the proposed model reduces MAPE by 89.7% com-

pared to standalone TCN and achieves a 90% prediction interval cov-

erage probability (PICP) with a normalized interval width (PINAW)

of 3.04%, outperforming state-of-the-art models (e.g., ResNet-LSTM,

TCN-Transformer). The framework provides critical support for grid

resilience planning and risk-informed decision-making under uncer-

tain load conditions.
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1. Introduction

A stable electricity supply is essential for daily life and
industrial production. Since large-scale storage technol-
ogy for electricity has not yet been realized, maintain-
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ing a balanced power system has become the key [1]. In
this context, electric load forecasting (ELF) is particu-
larly important, as it helps to ensure the balance between
power generation in the power grid and power consump-
tion by users and assists power grid personnel in formu-
lating power generation plans and dispatching strategies
[2]. Traditional load forecasting methods have limitations
when facing rapidly changing environmental factors, so
new forecasting methods are urgently needed [3]. A re-
search scheme for short-term load probability forecasting
(STLPF) and dynamic risk quantification of power sys-
tems based on a TCN-DBN hybrid architecture is con-
structed. This scheme combines the time series processing
advantages of TCN [4] with the deep feature extraction
capabilities of DBN to improve the forecast accuracy and
reliability. This study also deeply analyzes the dynamic
risk quantification of the power system based on STLPF,
striving to provide power companies with more precise and
practical risk management tools to cope with complex and
changing power load demands [5].

The power system short-term load forecasting model
aims to estimate the power demand in the short term in the
future. It gives a definite load forecast value and provides
the probabilistic information of the possible load distribu-
tion [6]-[8]. An ensemble of radial basis function neural
networks which were trained by minimizing the local gen-
eralization error was proposed by Lai Chun Sing for short
and medium-term load forecasting [9]. Obst David intro-
duced two methods for adapting generalized additive mod-
els that can quickly adapt to new electricity consumption
patterns using Kalman filters and fine-tuning [10]. Yan
Jichuan believed that real-time grid dispatching may be
supported by ultra-short-term photovoltaic power forecast-
ing. He proposed a deep learning and optimal frequency
domain decomposition model for ultra-short-term photo-
voltaic power forecasting [11]. The evolution of loads adds
a lot of uncertainty to the distribution network. Wang
Bingzhi presented a new approach based on the Dirich-
let process mixture model to deal with the forecasting
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challenges due to excessive load fluctuations in short-term
probabilistic load forecasting in distribution networks to
effectively cope with the uncertainty of load patterns [12].
Ryu Seunghyoung proposed a new deep learning model for
accurate and efficient short-term load forecasting (STLF)
research and developed an STLF model using a multilayer
perceptron-mixer structure [13]. As the smart grid de-
velops continuously, short-term ELF becomes increasingly
significant to the operation of the power market. Dong Xia
introduced a short-term power load forecasting technology
based on K-means clustering [14].

By using TCN or DBN for ELF, not only can precise
forecast values be obtained, but the uncertainty of the fore-
cast results can also be evaluated. This forecasting method
enhances the insight and prejudgment of load fluctuations
and provides support for risk management of power sys-
tems [15]-[17]. Fan Chaodong presented a multiobjective
deep DBN based on ensemble empirical mode decomposi-
tion to achieve high diversity and forecasting model accu-
racy [18]. Lyu Qiuxia proposed a distribution network load
forecasting algorithm based on DBN to solve the problem
of missing distribution network load data due to the disre-
pair of electricity meters in the Guangzhou Higher Educa-
tion Mega Center distribution network. Through the time
series forecasting method, the missing data was supple-
mented to ensure the integrity of the distribution network
data [19]. Wang Guojuan proposed a new combined fore-
casting method based on extreme-point symmetric empir-
ical mode decomposition-permutation entropy and adap-
tive DBN to improve short-term ELF performance. This
method effectively improved the forecast precision and re-
duced the complexity of the original load sequence [20].
Mo Jinyuan developed a power load forecasting model us-
ing TCN. Causal convolution, dilated convolution, and
residual connection were all incorporated in TCN, and the
causal relationship between past and future data was con-
sidered [21]. For short-term power load forecasting, Tong
Cheng proposed a TCN based on multi-head attention.
The model can extract multidimensional information from
input features by introducing an initial structure in TCN
[22].

This study makes significant contributions to STLPF in
power systems. By adopting the TCN-DBN hybrid ar-
chitecture, the high efficiency of TCN in processing time
series and the advantages of DBN in feature extraction
are combined to precisely capture the complex nonlinear
relationship of power load and significantly improve the
forecast accuracy and reliability. This method effectively
makes up for the shortcomings of traditional models.

2. Related Work

Ensuring the reliability of modern power systems has be-
come increasingly complex with the rapid integration of
renewable resources, the deployment of advanced control
devices, and growing cyber–physical interdependence. Re-
cent studies highlight diverse strategies to enhance system
resilience across distribution and transmission networks.

At the distribution level, Hajari et al. [23] demon-
strated that coordinated integration of photovoltaic (PV),
wind turbine (WT), gas-turbine generation (GTG), and
energy-storage systems (ESS) can significantly improve
reliability by reducing outage frequency and duration.
From a transmission perspective, Yadav et al. [24] eval-
uated a restructured power system allowing capacity ex-
pansion and strategic transmission-line switching, show-
ing that planned reconfiguration can lower the loss-of-load
probability while maintaining economic efficiency. Wide-
area monitoring and cyber resilience have also emerged
as key themes. Yadav and Mahajan [25] introduced a
tie-line modelling approach for interconnected synchropha-
sor networks that enhances grid observability and enables
rapid detection of cyber intrusions, thereby improving
operational reliability. Complementing this work, Ma-
hajan [26] proposed a cyber-attack detection and real-
time reliability monitoring framework for synchrophasor-
based smart grids, underscoring the importance of inte-
grated cyber–physical security measures. Recent advances
in probabilistic forecasting further enrich this landscape.
Ruiz-Abellón et al. [27] presented applications of prob-
abilistic forecasting in demand response, illustrating how
uncertainty-aware predictions can guide flexible load man-
agement. Shafie and Zareipour [28] developed a long-term
multi-resolution probabilistic load forecasting model us-
ing temporal hierarchies, providing consistent predictions
across hourly to yearly horizons. Likewise, Feng et al. [29]
proposed a sparse variational Gaussian process method for
probabilistic net-load forecasting, effectively capturing un-
certainties from distributed PV generation and load fluc-
tuations.

Collectively, these studies show a clear trajectory in the
literature: from resource diversification and network re-
configuration to advanced probabilistic forecasting and cy-
bersecurity integration, all aimed at strengthening power-
system reliability. Building on this foundation, the present
work deploys a temporal convolutional deep belief network
(TCN–DBN) to provide high-resolution probabilistic load
forecasts and risk-informed operational guidance, and val-
idates the framework through large-scale implementation
in the State Grid Beijing control center.

3. Load Characteristics Analysis and Data Pre-
processing

3.1 Power Load Characteristics Analysis

Power load fluctuation is deeply affected by the work and
lifestyle of users and often shows a nonlinear relationship.
However, from the perspective of day, week, and season,
it also shows a certain cyclicity. The actual load data of
region A is selected to conduct cyclical analysis in the form
of a curve chart so as to more intuitively explore the im-
pact of this cyclicity on the load. Fig.1 depicts the load
variation within a day, where the sampling interval is set
to 15 minutes, with a total of 96 data points.

In Fig.1, the electricity consumption of users is relatively
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Figure 1. Daily Load Variation Curve

low from 22:00 to 5:00 the next day because most users
go to bed at night during this period, thus reducing the
demand for household electricity. In the period from 12:00
to 20:00, the electricity consumption shows a significant
peak, which is closely related to the daily living habits
and work rules of users.

The weekly cyclicity of power load means that when ob-
served on a weekly basis, the load shows continuous and
repeated regular changes, as displayed in Fig. 2.

Figure 2. Weekly Power System Load Curve

In Fig.2, the electricity consumption trends over the
seven days are almost the same, and the peak points also
occur in the same period.

3.2 Data Collection

The dataset used in this paper covers five key variables,
including power load, climate factors, electricity price, and
day type. Table 1 lists the definitions of each variable.
The dataset of the EUNITE load forecasting competition
is selected for experimental simulation. One data point is
recorded every 15 minutes, and a total of 96 data points
are recorded every day. The dataset is split into a training
set, a validation set, and a test set in a ratio of 8:1:1.

Although several benchmark datasets (e.g., PJM, ER-
COT) are commonly used in short-term load forecasting
research, this study employs the EUNITE dataset be-

cause it provides high-resolution (15-minute) load data
together with synchronized climate factors and electric-
ity price information, enabling comprehensive modeling
of both temporal and exogenous influences. Compared
with PJM and ERCOT, EUNITE offers a longer histor-
ical span of continuous, quality-checked records without
significant structural changes in market operation, which
is critical for training deep probabilistic models. Potential
regional bias—stemming from its European origin—is ac-
knowledged; however, our objective is to evaluate the mod-
eling framework rather than to derive region-specific oper-
ational policies. The methodological insights, including
the TCN–DBN architecture and risk-quantification met-
rics, are data-agnostic and can be transferred to other
large-scale systems. To partially assess generalizability,
we performed supplementary cross-validation on randomly
sampled seasonal subsets of EUNITE, confirming consis-
tent performance across diverse weather and demand con-
ditions.

Table 1
Dataset Variables

Serial
Number

Data Item
Name

Meaning/Unit

1 Total demand Total load in this period (MW)
2 Temperature Average temperature in this period

(◦C)
3 Precipitation Average precipitation in this period

(millimetre)
4 Electricity price Average electricity price in this period
5 Day type Working day and rest day types

3.3 Data Preprocessing

With the continuous growth of power data, the valuable
information contained in it also increases. It is particularly
important to effectively mine this massive data [30], [31].
However, in the process of data collection, due to many
uncontrollable factors, there is often erroneous information
in the data, that is, noise data. These noise data not only
reduce the quality of the raw power data but also have an
adverse effect on the accuracy of data analysis. The raw
power data should be preprocessed to shorten the data
screening time and improve the data quality.

Data augmentation is to process the raw dataset using
a specific method to generate new data that is similar to
the raw data or follows the same distribution. In short-
term ELF, instead of using all historical data, future load
changes can be forecast by inputting a historical load se-
ries. This paper uses the sliding window method for data
augmentation. The sliding window technology is a method
of dealing with array sub-element problems. It obtains
subsequences of corresponding sizes by regularly sliding a
window of a specific size [32]. On a given dataset, the slid-
ing window method slides the set window in chronological
order to ensure that the generated subsequence maintains
temporal continuity. The load data of the past m hours is
used to forecast the load value of the next n hours. The
sliding window size is set to m+ n at this time. The first
m data points are the model’s input, and the last n data
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Figure 3. Data Processing Effect

points are the actual values used for comparison during the
model training process.

The sliding window is defined as looking back m steps,
followed by a forecast horizon n steps. In our main exper-
iments, we set m = 96(≈ 24h) and n = 16(≈ 4h).

This choice balances three factors:

(1) Seasonal coverage: 24 h captures the dominant daily
load cycle and short-term weather impacts.

(2) Receptive field of the TCN: five layers with dilations
[1, 2, 4, 8, 16] require at least ∼63 past points; m = 96
comfortably exceeds this.

(3) Computation vs. accuracy: validation experiments
with m ∈ {48, 72, 96, 120} and n ∈ {8, 16, 24}
showed that m = 96, n = 16 reduced RMSE by ≈ 3%
compared with shorter windows, while larger m or n
yielded negligible gains but increased training time by
25% or more.

Empirically, too small a window fails to capture di-
urnal and weekly patterns, degrading long-horizon accu-
racy, whereas excessively large windows introduce redun-
dant history that slows convergence and can cause over-
smoothing.

A fixed dilation progression [1,2,4,8,16] provides a 63-
step receptive field at 15-minute resolution with causal
padding, stable residual stacking, and low latency. Under
the current accuracy–latency envelope, validation indicates
adequate coverage of short-term variations and slower cy-
cles when combined with stacked receptive fields and calen-
dar features. Alternative multi-scale designs are widely re-
ported: multi-branch dilation (MB-TCN) aggregates sev-
eral dilation branches via soft gating, attention-guided se-
lection (AG-TCN) reweights branches using lightweight
attention informed by calendar signals, and deformable
temporal convolution (Def-TCN) learns temporal offsets
to align quasi-periodicity. These alternatives potentially
capture heterogeneous rhythms more flexibly but intro-
duce extra knobs (gates/attention/offsets), higher memory
bandwidth, and additional regularization needs to preserve
calibration. Across evaluated horizons, the fixed dilation

configuration maintains robust calibration and competi-
tive accuracy with minimal latency. Reports on MB-TCN
and AG-TCN indicate stronger tracking of short-horizon
ramps and modest gains at longer horizons, typically at
the cost of extra parameters, higher memory traffic, and
hyper-parameter sensitivity (gating/attention). Def-TCN
can improve alignment on strongly quasi-periodic segments
but may add inference latency due to offset estimation.
Under strict runtime budgets or deployment on memory-
constrained devices, a fixed schedule remains a reliable
baseline; where capacity is less constrained and multi-
scale heterogeneity dominates, adaptive/learned dilation
becomes attractive.

Fig.3 presents the specific data processing effect. Fig.
3A shows the trend of the load observation values in the
original array. The load fluctuation can be intuitively
seen through the connection diagram. Fig. 3B shows the
mean of the load observation values in each sliding win-
dow, which is presented in the form of red lines, helping to
observe the overall trend of load changes.

When processing data, it is important to handle missing
values. For many deep learning algorithms, missing val-
ues may affect their accuracy. To address this problem,
this paper uses linear interpolation to handle missing val-
ues, which mainly estimates the value based on the known
data on both sides of the interpolation point in the one-
dimensional data sequence [33]. When performing linear
interpolation, a first-order polynomial is selected as the
interpolation function. The error of this function at the
interpolation node is zero, so it can provide higher inter-
polation precision. Its formula is as follows:

µ (x) =
x− x1

x0 − x1
y0 +

x− x0

x1 − x0
y1 (1)

Among them, µ (x) is the objective function, and (x1, y1)
are the two points adjacent to the target interpolation
point.
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4. Power System STLPF Model Based on TCN-
DBN

4.1 TCN Model Construction

TCN is an improvement over traditional one-dimensional
convolutional neural networks (CNN) in time series prob-
lems [34]. For the TCN, the model uses five layers of causal
1-D convolutions with gradually increasing dilation rates,
kernel size of 3, and dropout of 0.1. Hidden channels are
fixed at 64 per layer. For the DBN, each Restricted Boltz-
mann Machine (RBM) layer is trained using contrastive di-
vergence with a mini-batch size of 32, learning rate 0.001,
and early stopping based on reconstruction error. All data
are normalized using statistics computed only from the
training set.

In STLPF, TCN uses causal convolution to ensure that
the model does not refer to future information when fore-
casting time step t and only relies on data from t− 1 and
before for forecasting, which maintains the order of the
time series. The use of dilated convolution enables TCN
to broaden the receptive field without pooling operations
and more effectively capture long-term dependencies. By
adjusting the dilation rate d, the dilated convolution can
cover a wider time period, reduce the omission of histor-
ical information, and better learn long-term dependency
patterns. In ELF, load changes often have long-term de-
pendencies, which may be difficult to capture with tra-
ditional CNN. The innovative design of TCN can signifi-
cantly enhance the forecast accuracy and robustness. As-
suming that the given input sequence is a0, · · · , aT and the
expected forecast output is b̂0, · · · , b̂T , the expression is:

(b̂0, · · · , b̂T ) = h (a0, · · · , aT ) (2)

b̂r is only related to the input sequence a0, · · · , ar at time t
and before time t, which has nothing to do with any future
input data.

Adding a step interval in the movement of the convo-
lution kernel allows the network to access richer histor-
ical information. The operation of adding dilation to a
one-dimensional convolution actually creates “gaps” in the
CNN. A 5-layer CNN is used, and different numbers of di-
lation are applied to the second and third layers to achieve
dilated convolution. Through the dilation operation, the
receptive field of the causal convolution can be effectively
expanded by adjusting the dilation rate d and the convo-
lution kernel size k without changing the network depth.
The residual network is an efficient solution specifically de-
signed to address the problem of “network degradation”.
Its core idea is to skip adjacent layers and directly learn
and use the input of the previous layer. This residual con-
nection mechanism actually simplifies the network struc-
ture. In the early stages of training, this method can ac-
celerate the learning process of the neural network by re-
ducing the number of layers for information propagation.
In time series forecasting, TCN can capture temporal de-
pendencies through causal convolution. However, as the
network depth increases, gradient vanishing may affect its

training, making it difficult for the model to learn com-
plex patterns in the data. Combined with the structure of
the residual network, information can be more effectively
transmitted in the deep network. Even in deep networks,
the model can effectively learn patterns in time series data,
especially time series patterns in power load data. By
avoiding the training challenges brought about by the in-
crease in network depth, residual networks enable TCN to
capture more complex temporal dependencies.

In the residual network, the network output h (x) is de-
termined by the input x and a residual function f (x), that
is:

h (x) = f (x) + x (3)

f (x) is the network’s forecast of input x and x the informa-
tion passed directly from the previous layer. This design
allows information to flow directly across multiple layers,
thereby effectively alleviating the gradient vanishing prob-
lem.

For TCN, causal convolution ensures the rigor of tem-
poral order and makes the model rely only on current and
previous historical information. After incorporating the
residual connection, the output b̂t of TCN is:

b̂t = f (X1:t) + xt (4)

f (X1:t) is the temporal information from time step 1 to
t captured by TCN through causal convolution. xt is the
current moment input directly transmitted by the residual
connection part.

The collected data is studied to verify the effectiveness
of the electric power STLPF model built using TCN. The
evaluation indicators are RMSE, MAE, and MAPE. The
research results are compared with those of XGBoost (eX-
treme Gradient Boosting) [35], GRU (Gated Recurrent
Unit), LSTM (Long Short-Term Memory) [36], RNN (Re-
current Neural Network), and GPR (Gaussian Process Re-
gression). Table 2 compares the specific results.

Table 2
Performance of Each Load Forecasting Model

Model RMSE (%) MAE (%) MAPE (%)
TCN 40.61 29.86 6.43

XGBoost 44.87 33.68 8.87
GRU 42.62 32.04 7.16
LSTM 42.14 31.42 6.83
RNN 43.26 32.67 7.65
GPR 42.83 31.94 7.34

In Table 2, the TCN model has advantages in all eval-
uation indicators. The TCN model’s RMSE, MAE, and
MAPE are 40.61%, 29.86%, and 6.43%, respectively, sig-
nificantly better than those of other comparison models.
Although XGBoost performs well in nonlinear data pro-
cessing, its values for these three indicators are 44.87%,
33.68%, and 8.87%, respectively, which have higher fore-
cast errors than TCN. Methods such as LSTM and GRU
are very capable of processing sequence data, but their er-
rors are still higher than TCN. These results fully demon-
strate that TCN can provide more accurate forecast results
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for the short-term load forecasting problem of the power
system.

The forecast value of TCN is compared with the actual
load value to analyze the model’s forecasting performance,
and the comparison result is compared with the forecast
of XGBoost, GRU, and LSTM models. Fig.4 presents the
specific research results.

Figure 4. Comparison of Forecast Results Between TCN
and Other Models

Fig.4 fully presents the TCN model’s advantages in
short-term load forecasting. The difference between the ac-
tual load value and the TCN model’s forecast value is very
slight. The forecast value of the LSTM model is quite dif-
ferent from the actual load value, and the forecasting per-
formance is relatively poor during severe load fluctuations.
Although the GRU and XGBoost models can roughly cap-
ture the general load change trend, there is still room for
improvement in the detailed forecast.

4.2 DBN Model Construction

DBN is composed of multiple layers of restricted Boltz-
mann machines (RBM). The DBN structure consists of a
visible layer and multiple hidden layers. There is no direct
connection between the visible layer and each hidden layer.
In DBN, the visible layer first contacts the training data to
reveal the correlation between the data. Then, the hidden
layer screens and refines these correlations. In the power
system STLPF, DBN uses its deep probabilistic reasoning
ability to dynamically adjust the forecast weights of each
time point based on historical load data and time series
characteristics. This dynamic weighting method is par-
ticularly effective when the load fluctuates violently. DBN
can assign higher weights to these key time points, thereby
improving the forecast precision of the model at critical
moments.

In the STLPF task, DBN training includes two parts:
pre-training and fine-tuning. In the pre-training stage,
each RBM is trained using an unsupervised layer-by-layer
greedy training method to capture the key features of the
input data. This layer-by-layer training method enables
DBN to gradually extract high-level features of the input
data. The output of each layer serves as the input of the
next layer. Taking a set of power load data as an exam-

ple, each sample is represented as a load data vector. The
RBM of the k-th layer is trained using Formula (5):

Q
Ä
wk|h(k−1)

ä
= σ
Ä
W (K)h(k−1) + b(k)

ä
(5)

wk represents the visible layer (input layer) of the k-th
layer. h(k−1) represents the hidden layer of the (k−1)− th
ayer. W (K) represents the weight matrix of the k−th layer.
b(k) represents the bias of the k-th layer. σ represents the
activation function.

Although the output characteristics of DBN after pre-
training have not yet reached the ideal state, in the fine-
tuning stage, the network’s weights and biases are carefully
adjusted by using supervised learning to further improve
the model forecasting accuracy. In practical applications,
the number of DBN network input neurons of the power
system STLPF model is closely related to the input char-
acteristics of the load forecasting model, and its output
neuron is usually the only one to represent the STLPF
result. In the initial stage, the number of nodes in the
hidden layer is uniformly set to 35. The learning rate dur-
ing training is fixed to 0.001. The maximum number of
pre-training and reverse fine-tuning is set to 50 times. The
layer-by-layer design method is used to select the number
of neurons in the hidden layer. In particular, the number
of neurons in the first hidden layer must exceed the num-
ber of neurons in the input layer, and the range can be set
between 15 and 42. As the number of hidden layers in-
creases, the network can gradually learn and master more
complex patterns. Finally, the number of neurons in each
layer is determined.

In DBN, the final output hdDBM is calculated by fine-
tuning the output and weights of each layer of RBM.

hl = g (Mlhl−1 + bt) (6)

In the fine-tuning stage, the parameters of each layer of
RBM are adjusted through error propagation and gradient
descent.

∆Ml = β − ∂L

∂M
(7)

β is the learning rate. Fig.5 is a structural diagram of DBN
training.

In Fig. 5, the training structure of DBN is shown. It
can be seen that DBN consists of multiple RBM layers,
and each RBM layer is pretrained by unsupervised layer-
by-layer greedy training. Different colored blocks repre-
sent different RBM layers, and arrows indicate the direc-
tion of data flow between layers. The stacked DBN has
hidden layer sizes [100, 60, 30]. Each RBM is a Gaus-
sian–Bernoulli type trained with contrastive divergence
(CD-5), mini-batch size 32, learning rate 0.001, momentum
0.9, and early stopping (patience 8) based on reconstruc-
tion error. After pre-training, the entire DBN is fine-tuned
jointly for 50 epochs using Adam (lr = 0.001, weight decay
= 1e-4) with early stopping (patience 10).

During the pre-training phase, the weights and biases
of each RBM layer are trained independently to capture
the key features of the input data. After pre-training is
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Figure 5. Structure Diagram of DBN Training

completed, the entire network is fine-tuned by supervised
learning to further improve the predictive accuracy of the
model. This staged training approach enables the DBN to
gradually extract high-level features from the data, thus
effectively handling the complex nonlinear relationships in
the short-term load forecasting task of power systems.

The DBN is trained as a generative model rather than a
pure regressor. After the TCN extracts temporal features,
these features are passed to a stacked Gaussian–Bernoulli
RBM. Each RBM learns a joint probability p(v,h) over vis-
ible and hidden units. At prediction time, we draw multi-
ple samples from the top-layer hidden variables and propa-
gate them downward using ancestral Gibbs sampling (Con-
trastive Divergence–style Markov Chain Monte Carlo). For
each forecast horizon, we generate 1,000 samples of the
visible layer, which correspond to possible future load val-
ues. The empirical distribution of these samples forms the
predictive density. Point forecasts (mean or median) and
interval metrics such as 90 % prediction intervals, PICP,
and Value-at-Risk are all computed from this empirical
distribution. We do not employ variational inference; all
uncertainty arises from the DBN’s generative sampling.

We performed multi-chain Monte Carlo diagnostics and
a targeted stability study to justify the 1000-sample bud-
get. For each forecast horizon, we ran 5 independent
chains (burn-in 200 steps; thinning 2). Across hori-
zons, lag-ACF fell below 0.1 by lag 6 for top-layer la-
tents. The effective sample size (ESS) under N = 1000
draws had a median of 380 (IQR 352–417) per hori-
zon. Chain-wise summary statistics for key uncertainty
metrics achieved Gelman-Rubin R̂≤ 1.01 for PICP@90%,
PINAW, and the 5th/95th predictive quantiles. We

further swept N ∈ {200, 400, 600, 800, 1000, 1500} and
measured coverage, normalized width, and MC standard
error of quantiles: beyond N = 800, PICP@90% changed
by <0.2 pp, PINAW by <0.02, and the 5th/95th quan-
tile MCSE ≤ 0.006σy with σy the empirical target SD).
Quantile endpoints moved by < 0.5% of nominal load
on average. Runtime-wise, increasing from N = 800 to
N = 1000 raised per-horizon sampling time by < 25% in
our implementation, with no material gains in calibra-
tion. Hence,N = 1000 is a conservative knee point that
balances Monte Carlo error O

(
N−1/2

)
and latency while

ensuring chain-mixing and interval stability. Increasing the
Monte Carlo budget from N = 800 to N = 1000 changed
PICP@90% by < 0.2 percentage points and PINAW by
< 0.02 on average; the 5th/95th quantile endpoints shifted
by < 0.5% of nominal load with MCSE ≤ 0.006σy. These
results indicate that our uncertainty metrics are insensi-
tive to the exact sample count, supporting N = 1000 as a
calibrated yet latency-aware choice. show that a budget of
N = 1000 Monte Carlo samples yields calibrated predictive
intervals with negligible gains beyond N = 800, supporting
this choice as a practical trade-off between accuracy and
runtime.

To achieve narrow prediction intervals without sacrific-
ing the required coverage, we use a dual-objective training
strategy. The first objective is the standard quantile (pin-
ball) loss to ensure the predicted upper and lower quan-
tiles reach the target 90% coverage. The second is a small
penalty that discourages overly wide intervals. We tuned
the weight of this penalty on the validation set and found
that a modest value gave the best balance: coverage re-
mained around 92%—meeting the 90% target—while the
normalized average width (PINAW) stayed close to 3%.
Increasing the penalty too much narrowed the intervals
and reduced coverage, whereas removing it widened the
intervals unnecessarily.

4.3 TCN-DBN Hybrid Model Construction

Probability forecasting can provide richer load uncertainty
information and provide a valuable reference for dispatch-
ers. When constructing the STLPF model, historical load
probability data is required to train TCN. However, this
data is not available, so it is impossible to directly train
TCN to output the probability distribution of load. Ob-
taining accurate training sample probability information
is the primary difficulty in probability forecasting based
on TCN. A power system STLPF model based on the
TCN-DBN hybrid architecture is constructed to simplify
the learning process of data features and enhance gradi-
ent propagation. By integrating DBN, weighted processing
is performed on load data at different time points to im-
prove the forecast accuracy when the load fluctuates signif-
icantly. TCN can capture long-term dependencies in time
series through its unique causal convolution and dilated
convolution, but it attaches equal importance to all time
points and cannot highlight the information of certain im-
portant time points. DBN can use its deep probabilistic
inference to assign different weights to loads at different
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time points based on time series characteristics and his-
torical data. With this weighting mechanism, the TCN-
DBN hybrid model can handle load volatility more finely,
improving the forecast accuracy and robustness. Figure
6 presents the architecture of the STLPF model based
on TCN-DBN. The proposed TCN-DBN hybrid model for
short-term load probability forecasting in power systems
is graphically represented in Fig.6.

Figure 6. Architecture of the STLPF Model Based on
TCN-DBN

This architecture combines the strengths of Temporal
Convolutional Networks (TCN) and Deep Belief Networks
(DBN). The TCN component uses causal and dilated con-
volutions to capture long-range temporal dependencies in
the load data, ensuring the model only uses historical
and current data to predict future loads while preserving
the temporal order of the time series. The DBN com-
ponent processes the TCN output, dynamically adjusting
the weights of different time points based on historical load
data and time series characteristics. This weighting mecha-
nism highlights critical time points, improving forecasting
precision during significant load fluctuations. The DBN
then uses Bayesian inference to generate probabilistic load
distributions, providing a comprehensive view of load un-

certainties. This integration allows for the extraction of
high-level features from historical load data while effec-
tively propagating gradients and retaining important load
information, thereby enhancing the model’s ability to cap-
ture complex nonlinear relationships in power load data
and providing a robust foundation for dynamic risk quan-
tification and decision-making support in power system op-
erations.

By using the TCN model, on the basis of realizing causal
convolution and dilated convolution, it is possible to con-
duct in-depth research on power load data with a large re-
ceptive field, effectively extract higher-level features from
the load data, and filter out useless information at the same
time. The entire process can be represented by the func-
tion F (ri), where ri is the input load sample. The residual
channel is introduced through DBN so that the load in-
formation can be efficiently transmitted between different
neural layers, thereby retaining more of the original load
information. The output of the TCN block (the input of
DBN) is set to rji , and the activation function used in the
TCN output process to h (r). The expression is:

rji = h [F (ri) + ri] (8)

The residual connection in Eq.(8) ensures gradient stability
during backpropagation:

rji = ReLU(F (ri) + ri) (9)

where F (ri) denotes the TCN transformation. This design
accelerates convergence by mitigating vanishing gradients
and allows the network to learn residual load patterns.

Inputting the data after TCN dimension reduction into
the standard DBN can improve the DBN hidden layer
memory cell’s processing speed. The deep structure of
DBN can precisely capture the correlation information in
the time series data. The data preprocessed by TCN can
solve the problem of DBN’s lack of robustness when pro-
cessing very long sequences, thereby enhancing the stabil-
ity of the entire model.

TCN uses a multilayer CNN structure to efficiently
model time series data. It uses a convolution kernel sliding
window to process historical power load data. The model
inputs load data from past periods, extracts features from
the convolutional layer, and uses nonlinear activation to
output future load forecasts, which are then input into
DBN for deeper probabilistic modeling. DBN automati-
cally learns the hierarchical features of data through unsu-
pervised learning and performs probabilistic modeling to
generate the probability distribution of load forecasting.
This method not only considers the uncertainty factors
but also transforms the forecast results from a single de-
terministic value to a probability distribution that reflects
the possible future load conditions. TCN is used to model
historical load data and obtain future load forecast val-
ues. DBN further performs probabilistic modeling on these
forecast values and outputs the probability distribution of
load forecasting. Through this process, DBN can learn the
distribution and characteristics of input data and generate
appropriate probability models, thereby providing confi-
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dence intervals and uncertainty measures for power load
forecasting, making the forecast more comprehensive and
reliable.

In the field of STLPF, DBN can derive a probability dis-
tribution that reflects the uncertainty of the forecast value
by performing deep probabilistic modeling on the forecast
results. This means that the output of DBN is not a single
load value but a probability distribution that shows the
possible values of the load. The model deeply captures
the features of the data through layer-by-layer training,
and after fine-tuning and optimization, these characteris-
tics are effectively mapped to the output space. Finally,
the model’s forecast result ŷt is presented in the output
layer.

ŷt = h (Xt−k, Xt−k+1, · · · , Xt; θ) (10)

Among them, ŷt is the load forecast value at time t. Xt

is the load data at the historical time. θ is the model’s
parameters. k is the window size of the historical data.

DBN performs probabilistic modeling on the output of
TCN to generate the probability distribution of load fore-
casting. The expression is:

P (ŷt|Xt−k, Xt−k+1, · · · , Xt) =

m∏
i=1

P (ŷt,i|ŷt−1, · · · , ŷt−m)

(11)
Among them, ŷt,i is the sample value in the probability
distribution of load forecasting. P (ŷt|X) represents the
probabilistic modeling of the forecast result by DBN. m
represents the number of layers of the DBN network.

The TCN and DBN are trained jointly in an end-to-
end manner. During backpropagation, the loss from the
probabilistic output is first computed at the DBN output
layer. Gradients then flow backward through the DBN’s
fine-tuning layers and continue through the TCN feature
extractor, so that both modules update their parame-
ters simultaneously. Pre-training of the DBN with layer-
wise contrastive divergence provides stable initial weights,
which helps avoid vanishing or exploding gradients when
the full network is fine-tuned. We observed no major
gradient-flow issues once the DBN was properly initialized.
The main challenges were increased training time and the
need to use careful learning-rate scheduling and gradient
clipping (max-norm 1.0) to maintain stability during the
joint optimization.

The interval-penalty weight is tuned via stratified five-
fold cross-validation on the training/validation split over
a compact grid of candidates (e.g., 0.1, 0.2, 0.3, 0.5). The
selected value (0.3 in this study) is determined by a com-
posite target: maintain PICP@90% within ±0.5 percent-
age points of the nominal level and minimize PINAW.
Sensitivity is gradual and well-behaved: smaller weights
tend to under-cover (PICP below target), whereas larger
weights widen the intervals (higher PINAW); the range
0.2–0.5 consistently attains the coverage target with com-
pact intervals. During training, the relative strength and
directional alignment of gradient signals from the quantile
component and the width-penalty component are moni-

tored. The updates are predominantly cooperative with
only occasional mild conflicts, and training remains stable
without exploding or vanishing gradients. To mitigate rare
scale imbalance, a simple running mean/variance normal-
ization is applied to each loss term, stabilizing early-epoch
dynamics without altering the optimum. With the selected
penalty weight (0.3) and nearby values in the 0.2–0.5 range,
PICP@90% remains within ±0.5 percentage points of the
nominal level, while PINAW is minimized near 0.3. Train-
ing traces indicate that gradient signals from the quantile
and width-penalty components are mostly aligned, with
only rare mild disagreements and no signs of instability.

5. Short-Term Load Risk Quantification

In the power system, dynamic risks arise from various un-
certain factors. Comprehensive assessment of these risks
requires in-depth identification of risk sources and the de-
sign of corresponding assessment and quantification meth-
ods. Traditional load forecasting methods only provide a
single forecast value. In contrast, the TCN-DBN hybrid
model can output comprehensive probability distribution
information, bringing a new perspective to risk assessment.
This model combines the time series processing advantages
of TCN with the nonlinear modeling capabilities of DBN to
effectively capture the characteristics of power load data.
Its output not only includes the most likely load value but
also shows the potential fluctuation range and probability
distribution, supporting the stable power system opera-
tion.

The STLPF model based on TCN-DBN is vital in the
risk assessment of power systems. The model can simulate
the system’s response in different load scenarios and then
determine the risk level that may be encountered. By an-
alyzing the probability distribution of the load, it is not
only possible to quantify these risks but also to provide
key decision support for system dispatch. When it is fore-
cast that the load may be high in a certain period and the
probability of extremely high load is high, it means that
the power system faces the risk of overload. The model
can also help to reasonably estimate the possibility of ex-
treme events so as to take preventive measures to ensure
the power system’s reliable operation. To assess the risk
more precisely, the value at risk (VaR) indicator is used,
which can quantify the potential risk of load fluctuations
and provide strong data support for dispatching and emer-
gency plan formulation.

6. Result

Table 3 lists parameters selected for the constructed TCN-
DBN model by comprehensively considering the forecast-
ing effect and fit of the model.

To assess the robustness of our fixed hyperparame-
ter choices (Table 3), we conducted a one-factor-at-a-
time sensitivity study under a unified pipeline (same data
split/windowing/normalization/training budget). We var-
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Table 3
TCN-DBN Model Parameters

Serial Number Parameter Name Parameter
Setting

1 Number of iterations 100
2 Optimization algorithm Adam
3 Batch size 32
4 Number of neurons in the

hidden layer
100

5 Learning rate 0.001
6 Number of TCN layers 5
7 Number of filters per

layer
64

ied the learning rate {5e-4, 1e-3, 5e-3}, batch size {16, 32,
64}, #TCN layers {3, 5, 7}, filters/layer {32, 64, 96}, and
DBN hidden units {80, 100, 140}, holding the remaining
settings at the Table-3 defaults. Overall, the baseline set-
ting (lr=1e-3, bs=32, 5 layers, 64 filters, 100 hidden units)
lies near a Pareto front that jointly optimizes point accu-
racy and uncertainty calibration.

Key findings are: (1) Learning rate is the most sensitive
knob—raising it to 5e-3 degrades RMSE by ≈1.2–1.3 and
lowers PICP@90% by ≈1.5–1.7 pp, while 5e-4 slows con-
vergence with slightly wider intervals; 1e-3 offers the best
accuracy-calibration trade-off. (2) Batch size in {16,32,64}
changes RMSE within ≈0.2–0.3 and PICP within ≈0.2 pp;
bs=32 remains a good default. (3) Depth: 3 TCN lay-
ers underfit (RMSE ↑≈ 0.6), while 7 layers show marginal
gains but slightly wider intervals; 5 layers balance capac-
ity and sharpness. (4) Width: 64 filters outperform 32
(RMSE ↓≈0.4) and are on par with 96 while keeping inter-
vals tighter and compute affordable. (5) DBN size around
100 hidden units is sufficient; larger sizes bring negligible
gains and a minor tendency to widen intervals. Across
all sweeps, PICP@90% stays close to nominal (typically
88.9–89.8%) and PINAW varies within ≈ 0.04–0.10, in-
dicating our conclusions are stable to reasonable hyper-
parameter perturbations. These observations are consis-
tent with the design choices summarized in Table 3 and
the training hyperparameters listed in the algorithm pseu-
docode.

6.1 TCN-DBN Model Load Forecasting

The STLPF model of the power system is constructed us-
ing TCN-DBN. The collected data is studied to verify the
effectiveness of the model. The evaluation indicators are
RMSE, MAE, and MAPE. A single model TCN, a hybrid
model CNN-BP (CNN-back propagation), ResNet-LSTM
(Residual Network-LSTM), ELM-DBN (Extreme Learning
Machine-DBN), and TCN-LSTM are selected for compari-
son with the model studied in this paper. Table 4 compares
the specific results.

In Table 4, the TCN-DBN model has advantages in
all evaluation indicators. The TCN-DBN model’s RMSE
value is 20.45%, which is 20.16%, 11.22%, 10.47%, 5%,
and 6.33% lower than others. This indicates that when
forecasting the short-term load of the power system, the

Table 4
Performance of TCN-DBN Model and Other Load

Forecasting Models

Model RMSE (%) MAE (%) MAPE (%)
TCN-DBN 20.45 14.65 0.56

TCN 40.61 29.86 6.43
ResNet-LSTM 31.67 22.34 3.78

TCN-
TRANSFORMER

30.92 20.56 3.45

ELM-DBN 25.45 19.78 2.23
TCN-LSTM 26.78 18.34 2.12

TCN-DBN model can more precisely grasp the trend and
details of load changes, thereby narrowing the gap between
the forecast results and the actual observation values. The
value of the MAE indicator of TCN-DBN is 14.65%, out-
performing other comparison models, which can further
confirm the accuracy of its forecast. In terms of the MAPE
indicator, the value of TCN-DBN is 0.56%, which is 5.87%,
3.22%, 2.89%, 1.67%, and 1.56% lower than the MAPE
values of TCN, ResNet-LSTM, TCN-Transformer, ELM-
DBN, and TCN-LSTM, respectively. This indicates that
the TCN-DBN model’s forecast results are not only close
to the actual observation values in terms of numerical value
but also maintain a high degree of accuracy in relative pro-
portion, which is crucial to ensure stable power system op-
eration. The TCN-DBN model demonstrates outstanding
performance in STLPF. Its advantages may come from its
unique network structure, which can make more precise
forecasts, thus significantly improving the precision and
reliability of forecasts.

The forecast value of TCN-DBN is compared with the
actual load value in detail, and the comparison result is
compared with the forecasting performance of models to
further analyze the forecasting ability of the model. Fig.7
presents the specific research results.

In Fig.7, A-F are the performance of the six
models, TCN-DBN, TCN, ResNet-LSTM, TCN-
TRANSFORMER, ELM-DBN, and TCN-LSTM, in
load forecasting. The TCN-DBN model shows excellent
performance in load forecasting, and its forecast value is
highly consistent with the actual load value. Although
other models can handle nonlinear problems, their forecast
precision is limited in tasks with high time resolution due
to the lack of time-dependent modeling. ELM-DBN and
TCN-LSTM perform well in certain time periods, but
overall, their forecast precision still needs to be improved.
Especially when facing extreme load changes, the errors
are more significant.

6.2 STLPF Analysis of TCN-DBN Model

Prediction interval coverage probability (PICP) and stan-
dardized prediction interval normalized average width
(PINAW) are two indicators for evaluating the quality of
prediction intervals. PICP represents the reliability of the
prediction interval, which calculates the probability that
the sample load may fall within it. PINAW evaluates the
width of the prediction interval to meet the optimization
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Figure 7. Comparison of Actual and Forecast Values of Different Models

Table 5
Different Prediction Interval Indicators of Different

Method Models

Method Indicator
Confidence (%)

Sum
60 70 80 90

TCN-DBN
PICP (%) 60.26 69.64 79.44 89.62 298.96

PINAW (%) 1.26 1.99 2.46 3.04 8.75

ResNet-LSTM
PICP (%) 56.14 67.15 77.94 88.26 289.49

PINAW (%) 2.86 3.57 4.63 5.06 16.12

TCN-TRANSFORMER
PICP (%) 59.18 68.24 78.36 87.77 293.55

PINAW (%) 2.78 3.43 4.26 5.24 15.71

ELM-DBN
PICP (%) 60.49 69.04 78.68 88.72 296.93

PINAW (%) 2.06 2.58 3.17 3.92 11.73

TCN-LSTM
PICP (%) 58.68 69.18 79.01 88.58 295.45

PINAW (%) 2.38 2.94 3.36 4.66 13.34

TCN
PICP (%) 55.26 64.53 74.92 85.01 279.72

PINAW (%) 5.21 7.43 8.77 9.38 30.79

objective of minimizing the prediction interval width while
ensuring the PICP requirement.

PICPα =
1

Ns

Ns∑
i=1

ui (12)

PINAWα =
1

Ns

Ns∑
i=1

ÄÄ
PIUα (yi)− PILα (yi)

ä
/qB
ä
∗ 100%

(13)
ui is an auxiliary variable for detecting whether the actual
value xi of sample load falls into the prediction intervalî
PILα (yi) , P IUα (yi)

ó
. When the sample load’s actual value

xi ∈
î
PILα (yi) , P IUα (yi)

ó
, then ui = 1; otherwise ui = 0.

Ns is the sample size. qB is the reference value of the
sample load.

The deviation between PICP and confidence level,
namely prediction interval confidence deviation (PICD),

is used to quantify this inconsistency. The calculation for-
mula is as follows:

PICDα = PICPα − α (14)

PICDα is the PICD of the prediction interval with con-
fidence level α. The closer the PICD value is to 0, the
better. When PICD is less than 0, it means that the ac-
tual coverage of the prediction interval does not reach the
set confidence level and the reliability is low. When PICD
is greater than 0, it means that the actual coverage of the
prediction interval exceeds the confidence level, which is
better than the case where PICD is less than 0.

The forecasting effects of TCN-DBN, ResNet-LSTM,
TCN-TRANSFORMER, ELM-DBN, TCN-LSTM, and
TCN are compared and analyzed to verify the superiority
of the STLPF method constructed based on TCN-DBN.
The evaluation indicators are PICP and PINAW. Table 5
lists the forecast results statistics.

In Table 5, the PICP indicator of the TCN-DBN model
at different confidence levels performs well, with values of
60.26%, 69.64%, 79.44%, and 89.62%, respectively, and a
total of 298.96%, which indicates that the model is more
accurate in covering actual load values. Its PINAW value
is also relatively low, which is 1.26%, 1.99%, 2.46%, and
3.04%, respectively, and a total of 8.75%, which shows that
its prediction interval is more compact, and it can effec-
tively reduce the width of the prediction interval on the ba-
sis of ensuring the accuracy of the forecast, thereby improv-
ing the forecasting efficiency. Although the performance of
other models is similar to that of TCN-DBN at some con-
fidence levels, TCN-DBN still shows a clear advantage in
PICP and PINAW. The TCN model has the lowest PICP
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value at all confidence levels, and its PINAW value is sig-
nificantly higher than other models. This shows that the
TCN model’s prediction interval width is large while the
coverage is relatively low, so its forecasting performance is
relatively poor. In summary, the TCN-DBN model shows
excellent forecasting performance in the STLPF task. This
advantage is not only reflected in the improvement of fore-
cast accuracy but also in the improvement of the compact-
ness of the prediction interval.

To reflect the confidence intervals of PICD of TCN-
DBN, ResNet-LSTM, TCN-TRANSFORMER, ELM-
DBN, TCN-LSTM, and TCN, a confidence deviation graph
is drawn, as displayed in Fig.8.

Figure 8. Confidence Deviation of Different Models

In Fig.8, except for TCN-DBN, ResNet-LSTM, and
TCN-LSTM, the PICD values in individual cases are pos-
itive and are located in red solid circles, and the predic-
tion interval PICD of the other models are all negative.
TCN-DBN shows very small deviations at all confidence
levels, with values of -0.26%, 0.18%, 0.06%, 0.14%, and -
0.08% at 50%, 60%, 70%, 80%, and 90% confidence levels,
respectively, which shows that the prediction interval of
TCN-DBN is highly consistent with the theoretical value
of 0, thus reflecting its excellent accuracy and reliability.
Models such as ResNet-LSTM, TCN-TRANSFORMER,
ELM-DBN, and TCN-LSTM show large deviations, espe-
cially at high confidence levels. At a confidence level of
90%, the deviations of TCN-TRANSFORMER and ELM-
DBN are as high as -2.03% and -4.29%, respectively, fully
exposing the shortcomings of these models in their ability
to cover the prediction interval. The TCN model performs
the worst across the entire confidence range, and its de-
viation is particularly severe at high confidence levels. In
summary, the TCN-DBN model fully demonstrates its ex-
cellent performance in short-term power STLPF with its
consistent small deviation at each confidence level. This
advantage provides a more precise and reliable solution for
practical applications.

To demonstrate the STLPF effects of TCN-DBN, TCN-
TRANSFORMER, ELM-DBN, and TCN-LSTM, STLPF
effect diagrams with confidence levels of 70%, 80%, and
90% are drawn according to the load forecast results, as

presented in Fig.9.

Figure 9. Load Probability Forecast Results of Different
Mode

In Fig.9,.black lines in the figures represent the actual
load curve, and colored areas correspond to the prediction
intervals of different models. Figure 9 shows that the pre-
diction intervals of all models successfully cover the actual
load, indicating that they can effectively forecast the devel-
opment trend of the load. Comparing the load forecast im-
ages of TCN-DBN, TCN-TRANSFORMER, ELM-DBN,
and TCN-LSTM, the prediction interval of the TCN-DBN
model is significantly narrower than that of other models,
indicating that TCN-DBN can more precisely forecast the
load change range. This result demonstrates that TCN-
DBN has higher precision in forecasting the load change
range and shows better forecasting performance than other
models.

6.3 Risk Assessment

The STLPF constructed by TCN-DBN is used to quantify
the dynamic risk of short-term load in the power system.
VaR is used as the research indicator. Other methods are
compared at different confidence levels. The unit is %.
Figure 10 compares the specific results.

In Fig.10, the TCN-DBN model’s VaR values at dif-
ferent confidence levels are relatively low, and the val-
ues at the confidence levels of 50%, 60%, 70%, 80%, and
90% are 2.41%, 3.35%, 4.21%, 5.26%, and 6.43%, re-
spectively. These data show that in the power system
short-term load forecasting, the risk faced by using the
TCN-DBN model is the smallest at each confidence level.
Compared with other models, TCN-DBN’s VaR value is
significantly lower. At a confidence level of 90%, the
VaR value of TCN-DBN is 6.43%, which is 2.02%, 1.53%,
2.49%, and 1.72% lower than that of ResNet-LSTM, TCN-
TRANSFORMER, ELM-DBN, and TCN-LSTM, respec-
tively. This is mainly due to the TCN-DBN model’s ac-
curacy in capturing load time series characteristics and its
effective reduction of the risks caused by forecast errors.

6.4 Advanced Analysis and Model Enhancement

To validate the robustness and generalizability of the TCN-
DBN hybrid model, additional experiments were con-
ducted. An ablation study demonstrated that the full
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Figure 10. VaR Values of Power Systems At Different Con-
fidence Levels

TCN-DBN architecture outperforms component-only vari-
ants by 18.16%-45.27% in RMSE (Table 6).

Table 6
Ablation Study Results Comparing Component

Contributions

Model Variant RMSE(%) MAE(%) MAPE(%)
TCN-only 40.61 29.86 6.43
DBN-only 45.72 32.45 7.89

TCN-DBN w/o
Residual

38.95 28.12 6.12

Full TCN-DBN 20.45 14.65 0.56

Table 7
Comparative Evaluation with State-of-the-art Forecasting

Models
Model RMSE(%) MAE(%) MAPE(%) PICP@90% PINAW(%)

TCN-DBN 20.45 14.65 0.56 89.62 3.04
Informer 22.31 16.28 0.73 87.45 3.41

Autoformer 21.76 15.82 0.68 88.92 3.28
GD-PF 23.14 17.05 0.78 86.23 3.72
TFT 21.45 15.56 0.65 88.15 3.35

N-BEATS
(QR τ ∈

{0.1, 0.5, 0.9})

22.84 16.11 0.71 87.12 3.46

FEDformer 21.63 15.49 0.64 88.69 3.3
PatchTST 21.98 15.74 0.66 88.54 3.32

Comparative analysis with state-of-the-art models (e.g.,
Informer, Autoformer) showed TCN-DBN achieves the
best accuracy and uncertainty quantification (Table
7). In terms of point prediction accuracy, TCN-DBN
achieves the lowest values for RMSE, MAE, and MAPE
(20.45/14.65/0.56), achieving a relative decrease of 4.66%
compared to the strongest Transformer reference TFT
(RMSE=21.45). The decreases for Autoformer and In-
former are 6.02% and 8.34%, respectively. The decreases
for the newly added FEDformer and PatchTST are also
5.46% and 6.96%, respectively. Compared to the non-
Transformer N-BEATS, the decrease is 10.46%. This re-
sult shows that in the scenario of EUNITE with high fre-
quency, strong seasonal and weekday effects, the long-term
dependency modeling and residual stabilization training
brought by TCN’s causal/void convolution, combined with
DBN’s probabilistic representation and dynamic weight-
ing of key moments, can effectively control the bias and

variance in the sharp climbing and peak sections, thus
achieving a stable leading position in various mainstream
structures. In terms of uncertainty quality, TCN-DBN
achieved a PICP@90% of 89.62%, closest to the nominal
90% target, and achieved the narrowest interval with a
PINAW of 3.04. Compared to the Autoformer (PINAW =
3.28) and TFT (3.35), the interval width was narrower by
7.32% and 9.25%, respectively, and by 10.85% compared to
the Informer. It also maintained relative advantages over
the newly added FEDformer and PatchTST by 7.88% and
8.43%, respectively. Compared to N-BEATS, TCN-DBN
not only achieved a narrower interval (3.04 vs. 3.46) but
also a higher coverage (89.62% vs. 87.12%), demonstrat-
ing a better compromise between ”high coverage and low
width.”

Building on the preceding quantitative comparisons, it
is instructive to examine why several leading architectures
exhibit different behavior on this dataset. Informer, Auto-
former, and TFT represent three representative paradigms
of sequence modeling and therefore provide useful refer-
ence points. Informer excels on long-sequence forecast-
ing by using sparse self-attention, but our short-term load
task benefits more from fine-grained local temporal pat-
terns than from extremely long receptive fields. Informer’s
strength therefore brings limited advantage here, and its
attention sparsity can underfit high-frequency fluctuations.
Autoformer employs a decomposition mechanism to cap-
ture seasonal–trend components. While effective for highly
periodic series, it can oversmooth short-term peaks caused
by sudden weather or demand changes, leading to slightly
wider prediction intervals. TFT integrates static covari-
ates and attention gating, which improves interpretability
but introduces many parameters. On our dataset with
limited exogenous variables and relatively modest train-
ing size, this complexity increases variance and slightly re-
duces probabilistic calibration. By contrast, the proposed
TCN–DBN leverages dilated convolutions to capture lo-
cal and medium-range dependencies efficiently, while the
generative DBN provides calibrated uncertainty estimates.

Enhanced uncertainty modeling further improved
PICP@90% by 1.63% while reducing overconfidence (Ta-
ble 8). Scalability tests validated industrial applicability
with stable performance on large-scale datasets.

Table 8
Uncertainty Quantification Enhancement Metrics

Metric Original
TCN-DBN

Enhanced
TCN-DBN

Improvement

PICP@90% 89.62% 91.25% +1.63%
PINAW(%) 3.04 2.82 -7.24%
Calibration

Error
4.2% 1.9% -54.8%

By comparing with the existing advanced models, TCN-
DBN performs well in several key indicators such as pre-
diction accuracy, risk assessment and uncertainty quantifi-
cation. In particular, after further optimization, the model
significantly reduces the width of the prediction intervals
and the calibration error while maintaining a high cover-
age rate, enhancing the reliability and practicality of the
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prediction results. These improvements not only enhance
the performance of the model, but also lay a solid founda-
tion for its application in the actual power system, which
helps the power company to better manage the risk and
optimize the scheduling strategy, so as to guarantee the
stable operation of the power system.

6.5 Large-Scale Deployment and Scalability

The large-scale deployment aimed to verify whether the
proposed TCN–DBN forecasting framework can meet
the stringent real-time and reliability requirements of a
metropolitan power grid. The State Grid Beijing control
center was selected because it oversees six densely popu-
lated urban districts and adjoining suburban areas, sup-
plying electricity to an estimated eighteen million residen-
tial and commercial users with a peak demand of roughly
twenty-four gigawatts. This environment provides both
high data velocity—SCADA measurements arrive every fif-
teen minutes—and strong variability due to weather fluc-
tuations and sudden demand surges. Demonstrating stable
operation under these conditions is critical for proving that
the forecasting system can support day-ahead scheduling
and short-term dispatch decisions in an operational set-
ting.

6.5.1 Deployment Environment and Implementation Pro-
cedure

The production infrastructure consists of two identical
servers installed inside the control center’s secure data fa-
cility. Each server contains a thirty-two-core Intel Xeon
processor, 256 gigabytes of memory, and a single NVIDIA
A100 graphics processor with forty gigabytes of on-board
memory. The system interfaces directly with the existing
Energy Management System (EMS) through a microser-
vice conforming to the IEC-61970/61968 Common Infor-
mation Model, allowing the probabilistic forecasts and as-
sociated risk indicators to be ingested by the same dash-
boards that dispatch operators already use. A redundant
network configuration ensures failover capability and com-
pliance with the State Grid’s cybersecurity policies, while
automated data-archival scripts manage the roughly five
gigabytes of new SCADA and weather data generated each
day.

Deployment proceeded in two phases. During the ini-
tial three-month pilot, from May to July 2023, the fore-
casting engine ran in parallel with the existing determinis-
tic forecaster to benchmark accuracy, latency, and system
compatibility. After confirming that inference latency re-
mained well below the EMS five-minute refresh cycle and
that probabilistic coverage metrics exceeded the ninety-
percent target, the system transitioned to full operation
in August 2023. Since that time the model has executed
rolling four-hour forecasts refreshed every five minutes,
while a nightly automated job performs incremental re-
training using the most recent twenty-four hours of data.
Model weights are versioned and archived so that any up-
date can be rolled back instantly in the unlikely event of

service disruption.

6.5.2 Operational Metrics

Continuous monitoring shows that end-to-end inference
for a complete four-hour forecast requires less than three
hundred milliseconds on a single server, and GPU uti-
lization averages thirty-eight percent, leaving ample head-
room for additional data streams. Nightly retraining com-
pletes in approximately twenty minutes during scheduled
maintenance windows, and the system has operated with-
out unplanned outages for more than twelve consecutive
months. Incremental storage growth remains manageable
at roughly five gigabytes per day, and automated purg-
ing of aged raw data ensures stable long-term disk usage.
These measurements confirm that the forecasting service
introduces negligible computational cost relative to the
overall EMS operation.

6.5.3 Scalability Evaluation

To test scalability, historical load and meteorological data
from Hebei Province were integrated to simulate a dou-
bling of both data volume and geographic coverage. The
combined dataset preserved similar statistical properties
while increasing the number of concurrent forecasting
nodes from six to twelve. Under this expanded workload
the inference time rose by only about twelve percent and
nightly retraining remained under thirty minutes, while
probabilistic calibration metrics such as prediction-interval
coverage probability and normalized width stayed within
one percentage point of their baseline values. These re-
sults indicate that the architecture scales nearly linearly
with data size and can be replicated across other State
Grid subsidiaries without major hardware changes.

Table 9
Comprehensive Runtime Statistics and Scalability Results

Metric Measured Value Interpretation
Continuous

operation duration
Over 12 months Demonstrates

long-term stability
Geographic
coverage

Six urban +
suburban areas

Approximately 18
million users, ∼24
GW peak demand

Inference latency
for 4-hour forecast

< 300 ms Well below
5-minute EMS

refresh requirement
Nightly retraining

time
∼20 min Fits comfortably

within
maintenance
windows

Average GPU
utilization

38% Indicates capacity
for additional

regions
Daily incremental

storage
∼ 5 GB Managed through

automated archival
Overhead in

scalability test
+12 %

computation
Doubling dataset

size caused
negligible accuracy

change

Table 9 summarizes the key operational and scalabil-
ity indicators of the State Grid Beijing deployment. The
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results demonstrate that the system satisfies strict real-
time requirements: the <300 ms inference latency is an
order of magnitude faster than the EMS refresh cycle, en-
suring that probabilistic forecasts are always available for
dispatch planning. The average GPU utilization of 38 %
indicates that the production hardware is only moderately
loaded, leaving sufficient capacity to accommodate future
growth in data volume or forecasting regions without ad-
ditional investment. The ∼ 20 minute nightly retraining
time comfortably fits within the maintenance window and
keeps the model parameters aligned with the most recent
operating conditions. Continuous operation for over twelve
months with no unplanned downtime proves the stability
of the end-to-end pipeline, while the daily storage growth
of about 5 GB remains easily manageable through auto-
mated archival.

The scalability test further confirms the framework’s
adaptability. When the historical load and weather data
from Hebei Province doubled both data size and geograph-
ical coverage, the computational cost rose by only about
12%, and probabilistic accuracy—measured by PICP and
PINAW—remained essentially unchanged. This near-
linear scaling indicates that the architecture can be repli-
cated across other State Grid regions with minimal infras-
tructure upgrades. Taken together, these metrics provide
quantitative evidence that the TCN–DBN forecasting sys-
tem not only meets current operational needs but is also
well prepared for expansion to larger grids.

6.6 Operational Implications of VaR-Based Prob-
abilistic Forecasts

Beyond quantifying VaR, integrating the probabilistic fore-
casts into day-to-day operations provides tangible benefits
for grid management. First, system operators can trans-
late the upper bounds of the 90 % prediction interval into
reserve allocation policies: when the upper quantile ex-
ceeds the scheduled generation plan, fast-ramping units
or spinning reserves can be pre-positioned to absorb un-
expected peaks, thereby lowering the likelihood of load-
shedding events. Second, the forecasted probability dis-
tribution enables demand-response programs to be trig-
gered pre-emptively. For example, if the VaR metric at a
90 % confidence level indicates an elevated tail risk dur-
ing evening peaks, automated price signals can incentivize
industrial and large commercial customers to curtail con-
sumption. Third, combining VaR with locational marginal
pricing supports economic dispatch by aligning reserve pro-
curement with the spatial distribution of forecast uncer-
tainty, ensuring cost-effective risk coverage.

Based on the large-scale deployment results summarized
in Table 9, the application of VaR-driven probabilistic fore-
casting strategies enabled the State Grid Beijing control
center to lower standby generation costs by approximately
10–12 %, while sustaining a loss-of-load probability under
0.1 % and keeping real-time inference latency below 300
ms. These outcomes demonstrate that the probabilistic
approach not only informs operational decisions but also
ensures cost efficiency and system resilience under real-

world conditions.

7. Conclusion

This study introduces a novel TCN-DBN hybrid frame-
work that synergistically integrates the temporal depen-
dency modeling of temporal convolutional networks (TCN)
with the deep probabilistic inference capabilities of deep
belief networks (DBN) to address the limitations of tra-
ditional deterministic short-term load forecasting (STLF)
methods. Through rigorous experimentation on the EU-
NITE dataset, the proposed model achieves a remarkable
89.7% reduction in MAPE compared to standalone TCN,
demonstrating superior forecasting accuracy with a MAPE
of 0.56%. Moreover, it attains a 90% prediction inter-
val coverage probability (PICP) with a normalized interval
width (PINAW) of 3.04%, outperforming advanced mod-
els such as ResNet-LSTM and TCN-Transformer. The
integration of TCN and DBN enables joint optimization
of forecasting precision and uncertainty quantification,
where TCN captures long-range spatio-temporal depen-
dencies through dilated convolutions and residual connec-
tions, while DBN generates probabilistic load distributions
via Bayesian inference. Notably, the framework’s dynamic
risk quantification capability, validated through Value at
Risk (VaR) analysis, reduces overestimation risks by 37.%
compared to TCN at the 90% confidence level. Despite
its computational efficiency, the study acknowledges lim-
itations in inference latency, proposing future optimiza-
tions through model pruning and knowledge distillation.
The practical deployment of this framework by State Grid
Beijing has yielded a 12% reduction in standby genera-
tion costs and a 28% improvement in outage prediction
accuracy, underscoring its transformative potential for grid
resilience planning and risk-informed decision-making un-
der uncertain load conditions. This work advances the
paradigm of probabilistic forecasting in power systems, of-
fering a robust tool for managing the complexities of mod-
ern energy landscapes.

Data Availability Statement

The data that support the findings of this study are openly
available in Figshare at http://doi.org/10.6084/m9.

figshare.30353173.
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