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Abstract

The vast expanse of large spaces allows for the accommodation of
many individuals, and incidents involving fire often present complex
and diverse rescue challenges. However, the current fire protection
system lacks the ability to predict fire condition changes effectively.
This research introduces an intelligent fire recognition plan for
large areas and a novel adaptive weighted fusion algorithm for
combining multi-sensor data. By combining data from three types of
detectors, temperature, smoke concentration, and carbon monoxide
content, the study provides a novel and comprehensive method of
acquiring fire information to improve the accuracy of fire warnings.
Simulation tests on similar detectors demonstrated the algorithm’s
efficiency in reducing external white noise interference on detection
data. In a medium-sized rehearsal space, it successfully integrated
data from over six detectors, enhancing fire recognition efficiency
by approximately 80 s. The studio experiment indicated that
the recognition scheme significantly improved fire index judgment,
with regional monitoring aiding in enhancing the prediction of
fire changes. Compared to the traditional identification methods,
the identification efficiency of the proposed method increased by
an average of 55.78%. The results show that the proposed fusion
algorithm resists external noise interference, enhancing system
robustness and reliability. This intelligent fire identification scheme
is effective for large spaces, improves fire information utilisation, and

holds value for indoor fire emergencies like in broadcasting halls.
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1. Introduction

The rapid progress of artificial intelligence has led
to the concept of intelligent city management being
proposed, and products of the information age, such as
smart buildings and smart cities have quickly gained
widespread attention. Smart firefighting is crucial for
smart cities, which achieves early warning and effective
management of fires through the integration of IoT,
big data and other technologies, improves emergency
management capabilities, optimises firefighting resource
allocation, and enhances fire prevention efficiency and
overall safety in cities [1], [2]. At the same time, how to
efficiently achieve fire warning, judgment, and rescue is
a new research hotspot in the intelligent construction of
smart cities [3], [4]. Traditional fire protection methods
are commonly used in Chinese building designs, but they
often lack data collection, analysis, and warning systems,
leading to inaccurate fire risk assessment and prediction.
These systems also suffer from information silos, impeding
efficient fire management. Moreover, many buildings’ fire
protection equipment, due to its long service life and lack
of maintenance, fails to function properly during fires,
causing significant losses. Improvements in intelligent fire
protection, particularly in warning and identification, are
crucial. Multi-sensor information fusion (MSIF) is highly
valuable for fire warnings [5], [6]. This study introduces
an adaptive weighted fusion (AWF) algorithm to integrate
data from various fire detectors in large spaces. Simulations
were conducted in theater rehearsal and studio spaces
with fire protection systems. The overall structure of the
study consists of five parts. Part 1 summarises the research
achievements and shortcomings of FII technology. Part
2 studies and designs a large space FII method based
on AWF. Part 3 conducts experiments and analysis on
the proposed FII method. Part 4 discusses the proposed
method and experimental results. Part 5 summarises the
experimental results and indicates directions for future
research.



2. Related Works

With the development of computer computing, people’s
research on the mechanism of fires continues to deepen. The
FII technology, based on big data analysis and constructed
using computer vision and geographic information systems,
has been widely studied by industry scholars [7]. Taspinar
et al. [8] introduced a three-stage fire detection framework
that employs basic image processing to extract flames
and convolutional neural networks (CNNs) for recognition,
achieving a 98.8% success rate in training data. Tan et al. [9]
created a path planning algorithm that incorporates image
processing techniques and the A-Star algorithm while
introducing a particle swarm optimised CNN for the
identification and localisation of fire sources in the input
image. Ren et al. [10] created an affordable smart fire
detection system for small to medium buildings that uses
multi-info fusion and fuzzy logic to pinpoint arc faults
in low-voltage systems, enhancing fire safety. Qian and
Lin [11] combined Yolov5 and EfficientDet for enhanced
forest fire detection through parallel training and weighted
fusion, surpassing traditional methods in feature extraction
and boosting detection accuracy and model recognition.
Li et al. [12] developed YOLOv8-EMSC, a lightweight
model that reduces parameters, boosts inference speed,
and achieves 95.6% accuracy in fire detection, improving
on existing models.

Data fusion refers to the combination or combination
of data or information collected from multiple sensor
information sources to obtain more accurate estimation
information [13]. Ali et al. [14] presented an efficient
underwater robot positioning method through compet-
itive/split input modulation neural networks, achieving
optimal fusion with an average error of 1.2704 m and a
computational cost of 2.2 ms. Wang et al. [15] enhanced
a sparse Bayesian learning model to tackle big data
heteroskedasticity and uncertainty in structural health
monitoring, improving decision-making and prediction for
large suspension bridges like the Tsing Ma Bridge in
extreme events. Wang et al. [16] improved a Gaussian
process for structural health monitoring by addressing
heteroskedasticity, extending applicability, and using an
out-of-sample prediction algorithm to estimate high
volatility from non-stationary typhoon responses.

Current research on FII is predominantly aimed at
small spaces and outdoor settings, with limited focus
on large indoor environments. This study introduces an
innovative AWF algorithm to address this gap. Utilising
AWF, a large space FII scheme is developed for multi-
sensor data fusion. The scheme incorporates a neural
network to assess the likelihood of open flames and
smoldering, and employs fuzzy inference to calculate
the Fire Hazard Index (FHI), enhancing building fire
recognition and protection strategies, and advancing smart
fire protection development.

3. Design of Large Space FII Based on AWF

Firstly, based on the distribution of fire detectors, neural
networks are introduced to judge the probability of open

flame and shadow ignition of on-site fires, and fuzzy
reasoning to predict the fire danger index. Secondly, a
large space intelligent identification scheme based on AWF
algorithm is designed.

3.1 Design of Fire Information Fusion Based on
Adaptive Weighted Estimation

In order to improve the estimation accuracy and detection
of multi-sensors, the study was designed to evaluate the
results of AWF using the mean square error. In this case,
the expression of the detection value of a single sensor is
shown in (1).

A;(t) = A(t) + d;(t) (1)

In (1), A represents an unknown variable. A; represents
the detection values of each sensor. A(t) represents the
actual signal of the sensor. d;(t) represents the cumulative
increase in white noise. When there is no offset in the
detected values and they are independent of each other, the
estimation formula for unknown variables is shown in (2).

o 2)

In (2), A represents the estimation formula for
unknown variables. w; represents the weighting coefficient.
N represents the number of sensors. j represents sorting.
Therefore, the expression of the estimated variance and
weighted coefficients for a single sensor is shown in (3).
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In (3), 9% represents the estimated variance. &7
represents the white noise variance of the sensor. A
represents the weighting factor. On this basis, the study
calculates the variance estimate using the corresponding
algorithm based on the information of the detection data
obtained from the sensors. Taking a group with two sensors
as a reference, the corresponding detection errors of the
two sensors are uncorrelated with the detection values and
are uncorrelated with each other, and the average value
between the two errors is set to be 0. Therefore, the formula
of the correlation coefficient is shown in (4).

Bij = D((As — i) (Aj — pj))
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In (4), Bjj represents the correlation coefficient between
two detectors. B; represents the auto-correlation coefficient
of a single detector. D represents the set of all errors.
1 represents a constant. From this, the MSE formula for
white noise can be obtained, as shown in (5).

97 = D(d}) = B; — By (5)

When the number of sensor detection reaches a certain
number, the time-domain estimates of the correlation



coefficients of two sensors and the auto-correlation
coefficients of a single sensor are shown in (6).

Bij(k) = 52 Byj(k — 1) + £Ci(k)C; (k)
Bi(k) = 5 Bi(k — 1) + £ Ci(k)Cy (k)

In (6), k represents the number of times the sensor has
detected it. B;;(k) represents the time-domain estimate of
B;;. B;(k) represents the time-domain estimate of B;. C;
and C; represent the time-domain detection values of the
detector, respectively. The more detections there are, the
more accurate the correlation coefficient is in estimating
the time domain. Therefore, this study further extends to
a group of multiple sensors based on (6). The average of all
time-domain estimated values of the correlation coefficient
between sensors can be used as the estimated value for the
group. The specific expression formula is shown in (7).
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In (7), n represents the number of detectors. The white
noise variance estimation of the detector is crucial for the
AWF algorithm. The study was carried out with a group of
three detectors of the same type and the estimated number
of detections was set to be five. The detection values are
shown in (8).

AL(t) = A(t) + dy (t)
As(t) = A(t) + do(t) (8)
As(t) = A(t) + ds(t)

For example, the formula for a detectors estimated
auto-variance and its covariance with others is presented
in (9).
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Based on the estimated values of auto-variance and
covariance, the variance estimates of white noise for
multiple detectors can be obtained. Furthermore, the
adaptive weighted value of a single detector at a specific
time can be obtained based on its auto-correlation
coefficient. Based on the above, the calculation steps of the
AWF fusion algorithm are shown in Fig. 1.

3.2 Design of Large Space Intelligent Recognition
Scheme Based on AWF

To accurately achieve intelligent identification and fire
warning for large space fires (LSF), this study proposes an
intelligent fire protection scheme for large spaces based on
AWF.

In Table 1, in large areas or rooms with high demand
for fire prevention, a single detector is difficult to meet the

. Data weighted fusion
[Input detector parametersj calculation

\ 4 Calculate covariance
[Normalization processingj estimates

of detection values

Calculate time-domain
estimates

v A
Calculate estimated Calculate time-domain
variance estimates

Figure 1. The calculation steps of AWF algorithm.

efficiency and accuracy of fire detection work. A detector
group with multiple detectors is needed to achieve effective
fire warning. Therefore, this study utilises AWF to fuse the
information collected by the same type of detector group.
As shown in (10).
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In (11), X represents the sample value. a represents the
set threshold for detecting outliers. The mean of adjacent
detectors of the same type is used as a supplement to
the detection related data. The mean formula for adjacent
detectors of the same type is shown in (11).

X(@—-1,5)+X(+1,7)

JrX(i,j — 1)+X(i,j+1)
. (11)

Based on the above, this study takes the rehearsal
room and studio of a theater as examples, and the layout
of fire detectors in a large space is shown in Fig. 2.

Figure 2(a) illustrates the fire detector layout in a
theater rehearsal room, comprising three CO and three
smoke detectors as a combined system. Due to the
limited range of temperature detectors, six are placed in
overlapping pairs across the room. Figure 2(b) shows an
increased detector count in a broadcasting hall with a
zoning protection design for grouped fire detection. To
address the limitation of detectors relying on single-sided
fire information, neural networks assess the probability of
flames and smoldering, while fuzzy reasoning predicts and
judges the fire situation.

Figure 3(a) depicts a neural network model, which
varies by topology, neuron traits, and training methods.
Figure 3(b) illustrates the backpropagation (BP) network
structure. Using reverse network data from the fire scene
and the building’s fire protection level, fuzzy reasoning
estimates the FHI for appropriate response actions. The
specific process is shown in Figure 4.



Table 1

Selection and Design Specification Requirements for Three Types of Fire Detectors

Types of Fire Detectors | Room Height ~ (m) | Ground Area S (m?) The Detection Range A and Detection
Radius r of a Single Detector
Room Slope 6
0 > 30° 15°< 0 < 30° 0 > 30°
A (w2) [ (m) | 4 () [ ()| 4 @02) [ (m)

Smoke/CO detector h > 12 S5>80 80 8.0 80 7.2 80 6.7
6<h<12 120 9.9 100 8.0 80 6.7
h<6 5<8 100 9.0 80 7.2 60 5.8
Heat detector h <8 S<30 30 5.5 30 4.9 30 4.4
h>8 S>30 40 6.3 30 4.9 20 3.6

emperature detector |
B Smoke detector ;
B CO content detector |

(@)

Figure 2. Layout of large space fire detectors.

(a)

Figure 3. Neuron models and reverse network structures.

The fluctuation range of open flame and smoldering
probabilities for input parameters is set to (0,1), and the
degree of fuzziness is divided into three levels: high (H),
medium (M), and low (S). The output is used as the final
judgment of the FHI by the controller, and a Gaussian
function is used to calculate the probability fuzziness of
open flames and smoldering, while a triangular function
is used to calculate the fuzziness of the output. Among
them, the Gaussian membership function formula is shown
in (12).

(12)

Hidden layer

(b)

Input layer Output layer

In (12), x represents the sample. y represents a
normally distributed parameter. z represents the standard
deviation of a normal distribution. € represents the mean
of a normal distribution. The membership function of a
triangle is shown in (13).

0 r<a
=2 g <z <b
f(z,a,b,¢) =4 *7° - (13)
T b<z<c
0 xr>c
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Figure 4. Design process of fuzzy reasoning model.
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Figure 5. Intelligent recognition model for LSF.

In (13), a, b, and ¢ represent parameters, where a and
c represent the “feet” of the triangle, and b represents
the “peak” of the triangle. Broadcasting halls and similar
large spaces pose challenges for fire prevention due to
their size and population density. Figure 5 presents a large
space MSIF FII scheme that integrates AWF distribution,
neural network-based real-time fire scene judgment, and
FHI prediction through fuzzy reasoning.

4. Large Space FII Simulation Experiment Based
on AWF

This study conducted simulation experiments on the
proposed AWEF' algorithm and FII scheme in two large
and medium-sized spaces, the rehearsal room and the
studio, respectively. The intelligent recognition of LSF was
achieved by comparing the detection values and fusion
effects of three detectors, the intelligent recognition scheme

!

Does the fltmction Adjustable
mee
expectations? No parameters

of open flame and smoldering probability at the fire scene,
and the judgment of FHI.

4.1 Validation Analysis of AWF Algorithm

To verify the effectiveness of the AWF algorithm, this study
detects time invariant systems by simulating detectors. The
experiments are conducted in a university theatre building
which is used as the experimental site for the design of
the smart fire protection system. The theatre building is
modelled 1:1 using building information modelling (BIM)
technology, including the arrangement of fire detectors
and the associated design of the fire protection system.
A numerical simulation of fire was conducted using Fire
Dynamics Simulator (FDS) software to simulate a variety
of fire scenarios, including a slow fire in a confined space, a
fast fire in a confined space, and a medium to LSF. In the
simulation experiment, the size of the physical quantity
to be detected is set to 100, the number of detectors is
three, and three calculated white noises are introduced,
with variance values of 4.00, 4.84, and 9.00, respectively.
The specific processing results are shown in Fig. 6.

Figure 6(b)-6(d) shows detectors’ values heavily
impacted by white noise, detector 3 the most. Figure 6(a)
presents AWF-processed values matching the unprocessed
mean, showing less noise interference and superior results.
This demonstrates AWEF’s effectiveness in minimising
external noise impact by fusing sensor data, enhancing
detection accuracy and reliability. In Fig. 6(e), detector 3
has the most white noise, receiving the lowest weights in
fusion, reducing its influence and improving overall data
fusion. This study further simulates and detects time-
varying systems using AWF, and the calculation results
are shown in Fig. 7.

Figure 7(a) demonstrates the superior data fusion
of a time-varying system over individual detectors.
Figure 7(b)-7(d) depicts simulations for detectors 1-3,
with detector 3 showing the most white noise, suggesting
greater environmental sensitivity. These results highlight
AWEF’s enhanced fusion in dynamic systems, effectively
mitigating noise and bolstering multi-detector resilience
without altering sample counts.
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Figure 6. Simulation of fixed value sensor fusion results.

4.2 Simulation Analysis of LSF Information Fusion

Through simulation verification of time invariant and time-
varying systems, the efficient fusion ability of AWF for
data collected from multiple detectors has been confirmed.
Therefore, this study further conducts fusion simulation
experiments in large spaces such as rehearsal rooms. The
processing results of the fusion algorithm for four sets of
fire detectors within 300 s are shown in Fig. 8.

Figure 8(a) and (b) shows smoke detector values
stabilising post-fusion. Figure 8(c) and 8(d) indicate
reduced CO detector fluctuations, maintaining overall
trends. The comparison in Fig. 8(e), (g) with (f), (h)
reveals AWF’s effective averaging on temperature detector
data, highlighting its robust performance in complex, fire-
prone buildings. Meanwhile, the robustness of AWF in
the process of spatial fire information fusion is verified, as
shown in Fig. 9.

Figure 9(a) and 9(b) shows similar fire development
trends for two temperature detectors, but Group 1’s fire

©

probability changes at 100 s, while Group 2’s change is
around 120 s, suggesting Group 1 is closer to the fire source.
Figure 9(c) displays FHI recognition from fused data, with
Group 1 changing at 95 s and Group 2 lagging. These
results show AWF reduces detector failures due to faults
and interference, enhancing fire system robustness.

4.3 Simulation Analysis of Intelligent Fire
Protection Schemes for LSF

Based on the proposed intelligent fire protection scheme for
LSF, this study takes the broadcasting hall as an example
and designs the ignition point as the front row of the seat
for simulation analysis. The entire studio space is divided
into 26 intelligent fire protection small areas, and each
area is equipped with three smoke concentration and CO
detectors, as well as four temperature detectors. According
to the detection values collected by the detector, the fusion
algorithm processes the data of the three types of detectors
as shown in Fig. 10.
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Figure 8. Data fusion results of various detector groups in the rehearsal room.

Figure 10(a) and 10(d) demonstrates a more harmo-
nious temperature trend post-fusion. Figure 10(b) shows
the smoke detector’s erratic numerical changes, contrasting
with the smoother trend in Fig. 10(e) after fusion.
Figure 10(c) details CO content fluctuations within 1500
s, with notable variations in some areas. Fusion, as shown
in Fig. 10(f), results in more averaged and smoother data,
highlighting AWF’s value in enhancing large space FII and
fire protection efficiency.

Figure 11(a) and 11(b) reveals that areas near the
ignition point peak in smoldering probability at 160 s,
with open flame probability fluctuating around 120 s
before rising. Farther areas peak in smoldering around

290 s, with open flames fluctuating at 250 s. Proximity
to the ignition point affects fire system response times,
with areas closer prompting earlier activation of sprinklers,
smoke exhaust, and alarms by about 130 s. Figure 11(c)
shows the FHI increasing at 120 s for the closest area,
while Fig. 11(d) shows it at 250 s for the farthest. This
demonstrates the effectiveness of regional fire monitoring
and the superior intelligent recognition of synchronised
protection responses. Finally, the study further compares
the efficiency of approach recognition in rehearsal room
and studio between the traditional recognition method
and the proposed method of the study, as shown in
Table 2.
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Comparison of the Efficiency of the%;fazch Method and Traditional Method
Method Rehearsal Room Broadcasting Studio
Recognition | False Positive | Under-reporting | Recognition | False Positive | Under-reporting
Time (s) Rate (%) Rate (%) Time (s) Rate (%) Rate (%)
Traditional method 203.53 5.23 12.33 243.87 7.87 13.45
Research method 80.24 1.45 3.01 119.58 2.04 3.59
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Figure 11. Comparison results of neural networks and fuzzy reasoning between the nearest and farthest regions of the ignition

point.

In Table 2, the research method improves the
recognition time in rehearsal room and studio by 60.58%
and 50.97%, respectively compared to the traditional
recognition method. Comparison of the false alarm and
missed alarm rates of the two methods shows that the
research method is more advantageous. This indicates that
the method of neural network and fuzzy inference combined
with AWF can effectively reduce the false alarm situation
and improve the intelligent recognition of fire.

5. Discussion

The AWF algorithm excels in multi-sensor data fusion,
reducing external noise interference and improving fire
recognition efficiency by about 80 s. on average in
medium-sized spaces. It outperforms traditional methods
by 55.78% on average. The algorithm dynamically adjusts
sensor weights to minimise outlier and noise impacts,
enhancing system robustness with outlier detection
thresholds between sensors. It dynamically weights data
using time-domain correlation coefficients, improving noise
suppression. By integrating multi-sensor data, the AWF
algorithm increases system accuracy and reduces reliance
on single data sources, which are prone to errors.
Incorporating neural networks and fuzzy inference, it
comprehensively assesses fire scene complexity, improving
fire situation predictions. Overall, the AWF algorithm
boosts fire recognition precision, reduces false alarms and
omissions, and supports regional monitoring for early fire
warnings and rapid responses.

Currently, the concept of utilising smart cities to
achieve modern urban governance in China has matured.
Gao and Zhao [17] investigated the complexity of the urban
spatial structure of Pingdingshan based on an improved

non-dominated sorting genetic algorithm-II algorithm.
Their results pointed out that smart technologies are
extremely important in modern urban governance, which
is consistent with the results obtained from the study.
Wu and Wang [18] proposed a multi-stage stochastic
programming model to address the issue of how to
coordinate multiple circular economy supply chain projects
to improve their operational efficiency and value. By
analysing typical circular economy supply chain projects
in China, coordinating multiple circular economy supply
chain projects provides a powerful tool for logistics
companies and third-party logistics companies to optimise
their investment decisions. Hao [19] proposed an improved
algorithm based on deep reinforcement learning to address
the problem that traditional algorithms are poorly adapted
to intelligent driving in smart cities. In response to the
challenges of low efficiency and high energy consumption in
large-scale distribution in smart cities. Wang [20] proposed
a two-stage intelligent distribution model that integrates
dual-loop material distribution and taboo search. In this
regard, the proposed method reduces energy consumption
through intelligent fire recognition technology and has
positive applications in smart city governance.

6. Conclusion

Given the unpredictable nature of fires, traditional
methods struggle to predict fire changes effectively. This
study introduces an AWF algorithm, combined with
neural networks and fuzzy reasoning, to create a large-
space FII scheme. It demonstrates that AWF reduces
noise interference and enhances data fusion reliability,
enabling fire identification about 80 s before an open
flame. Studio experiments showed the scheme could



monitor regional fires and detect open flames in about
120 s, increasing identification efficiency by 55.78% over
traditional methods. The results show that the proposed
AWF algorithm can effectively reduce the interference of
external noise on fused data and improve the robustness,
safety, and reliability of fire protection systems. The
designed intelligent recognition scheme for large spaces has
superior anti-interference and reduced false alarm rates.

This study concentrated on LSF identification and
alarms, not evacuation. Future work will expand AWF
for smart evacuation in large areas and assess its broader
smart firefighting value. Research will focus on enhancing
AWEF’s real-time capabilities for swift responses to fires and
aiding emergency protocols. It will also explore integrating
diverse sensors for more comprehensive fire data and
higher recognition accuracy, and test AWF’s applicability
in industrial safety and environmental monitoring.
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