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MONOCULAR VISUAL SLAM BASED ON

DEEP LEARNING FEATURE POINTS
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Abstract

In view of the traditional monocular visual odometer in visual

changes, light changes, poor robustness, low pose calculation

accuracy, the feature matching module in ORB-SLAM replaced with

feature matching based on SuperPoint network, and feature tracking,

local map, key frame recognition, loop detection, pose estimation.

Comparing the improved algorithm with the traditional ORB and

SIFT on the public dataset KITTI, the absolute trajectory error was

somewhat reduced, indicating that the method of integrating deep

learning feature points is significantly better than the traditional

visual SLAM in accuracy.
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1. Introduction

Synchronous location and map building Simultaneous
localisation and mapping (SLAM) [1]. It refers to the
mobile robot in the unknown environment, relying on
the sensing information, establish a map consistent with
the surrounding environment, while realising autonomous
positioning. Visual SLAM is generally composed of
four modules: front end (visual odometer), back end
(non-linear) optimisation, loop detection, and drawing
construction [2], As shown in Fig. 1. Traditional visual
SLAM methods mainly rely on manually designed point
features for inter-image matching and tracking [3], To
recover the camera local motion geometry and correct
the trajectory by loop detection. Visual SLAM can
provide real-time and accurate positioning information for
autonomous vehicles, capture road information through
cameras, and combine with SLAM algorithms, vehicles can
build a map of the surrounding environment in real time
and accurately determine their own location in the map.
However, it is unstable in environments such as direct or
dim sunlight, lack of features, and dynamics.
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Visual SLAM can be divided into feature point method
and direct method from the implementation method.
Although the direct method estimates the pose of the
camera by calculating the minimum photometric error,
although it saves a lot of computational time consumed
in feature point extraction and matching, and thus has a
fast running speed, the method is easy to be disturbed
by external conditions such as illumination due to the
strong assumption that the gray value is unchanged as
a precondition, and the robustness is weak. The feature
point method refers to the measurement and acquisition
of road markings with marking properties in the image,
and then the camera pose is evaluated by matching the
feature points between two adjacent frames. Image features
are generally divided into points, lines, edges and other
features. The most common point features are oriented
FAST and rotated BRIEF (ORB) [4], scale-invariant
feature transform (SIFT) [5], speeded-up robust features
(SURF) [6],etc. It has good versatility and robustness,
but the extraction effect is poor in complex scenes
such as obvious lighting changes. With the continuous
optimisation of the neural network structure, the deep
learning algorithm has a good matching effect in complex
environments such as different lighting conditions, and has
better robustness than traditional algorithms by extracting
semantic information for feature matching.

Given the advantages of the above deep learning
algorithms, more and more scholars are applying deep
learning to visual SLAM. In order to solve the problem
of acquiring the image depth information by monocular
camera, scholars have proposed the method of predicting
the image depth value by neural network (such as GCN-
SLAM [7], UnDeepVO [8], SfM –Learner [9], etc.), and by
using deep learning to replace traditional SLAM modules
(such as CNN-SVO [10], DP-SLAM [11] class).

In 2016, Detone et al. [12] designed the convolutional
neural network HomographyNet to directly estimate
the monography between images, compared with ORB,
proved the flexibility of deep learning methods and the
universality of applicable scenarios, and made excellent
contributions to feature extraction. In 2018, Detone et al
[13] proposed SuperPoint based on MagicPoint, which has
the characteristics of strong real-time performance, multi-
task collaboration, and lightweight network. The ability to
extract features from images in real time makes it ideal
for applications that require real-time processing, such as
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Figure 1. Visual SLAM framework diagram.

drones, robots, and autonomous driving. In addition, it
can extract stable features in images with different lighting
conditions, different rotation angles and different scales,
so it has good robustness. SuperPoint can be used for
both feature detection and descriptor extraction, which can
share parameters in the encoder part, and can be calculated
separately in the decoder part, which has a good synergy
between the two tasks. SuperPoint’s network structure
is very lightweight, with only a few hundred thousand
parameters, so it can be run on embedded devices. Due to
its good real-time and robustness, it has been widely used
in the field of computer vision.

In terms of feature point matching, the ratio of the
nearest neighbor and the two feature points to be matched
is generally calculated from the set threshold, and the
random sampling consistency (random sample consensus
[RANSAC]) algorithm is used [14], [15]. Removal of the
mismatch points was performed.

This paper first describes the overall algorithm process,
then introduces the relevant theoretical knowledge of the
SuperPoint algorithm, then designs a method for the
fusion of deep learning feature points and traditional visual
SLAM, and finally conducts experimental comparative
analysis.

2. The Overall Algorithm Process

One of the most critical steps of visual odometry based
on feature point method is to extract and match features,
and its main process is shown in Fig. 2, including feature
extraction, feature matching, pose estimation, and local
pose optimisation, mainly according to the relevant feature
matching relationship on the image to obtain the camera
motion estimation between adjacent frames, and then
the reprojection error function is constructed according
to the matching feature relationship obtained therefrom,
and the relative motion of the camera is obtained by
minimising the error at the same time. In fact, it can
be understood that the feature point method is divided
into several key steps: feature detection, feature matching,
motion estimation and optimisation.

In this paper, the SuperPoint network is used to
replace the traditional ORB feature extraction method,
and the feature points of the image are extracted and
their descriptors are calculated. The improved model has
three core threads, namely feature tracking, local mapping,
and loop detection, as shown in Fig. 3, and completes the
scheduling of the three threads through the total thread
of the system, which can realise the functions of map

Figure 2. Flowchart of visual odometry based on feature
point method.

reuse, loop detection, and repositioning, so as to realise the
accurate positioning and mapping of the mobile robot.

The system framework is studied as follows:
(1) Feature Tracking Thread: The main function is to

match and screen the map key frames, so as to improve
the accuracy of the map construction. Using SuperPoint
network to extract feature points from the current frame
image, and in the current frame feature points match
the previous frame feature points, introduce RANSAC
algorithm to feature matching points error matching
elimination processing, calculate the single stress matrix H
and estimate the camera position, and then track the local
map, the local map points and the current frame projection
to get more match, optimise the position of the current
frame attitude, and finally determine whether to insert a
new key frame.

(2) Local Map Building Thread: This is shown in Fig. 4,
the main function is to continue to optimise the map
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Figure 3. SuperPoint-SLAM system framework.

Figure 4. Drawing flow chart.

points and reduce the operation pressure of the return
loop detection. After inserting a new keyframe, the local
mapping thread first updates the common view and growth
tree, calculates the word bag BOW, inserts it into the
map, and then eliminates the redundant map points to
avoid mismatching and wrong triangulation, and retain
high-quality map points. At the same time, the feature
points that are not matched in the new inserted frame are
matched with the local map points, so that they meet the
pole line constraints, and the forward depth test, disparity
test, reprojection error test, and scale continuity test are
conducted to create a new map point. Then, the map
points and poses were optimised for local BA. Finally, the
redundant key frames are removed to reduce the calculation
pressure of the loop detection thread.

(3) Closed-Loop Detection Thread: The main function
is to detect the closed-loop degree of the map points, and
to optimise the closed-loop. First, the similarity between
the current keyframe and the loop candidate frame is
calculated, restricting the BOW vector similarity, the
number of shared words, and the continuity. If there is a
loop, match the common view of the current frame with the
map points of the common view of the matching frame to

establish a working relationship to fuse the duplicate map
points. Then, the trajectory location was used to optimise
it with this feature map. Finally, all keyframes and map
points were optimised.

3. SuperPoint Algorithm Framework and Principle

The traditional feature point detection algorithm usually
calculates the feature points and feature descriptors of
the image separately, without the ability to share the
calculation and output, while the SuperPoint used in this
paper can complete the detection of feature points and
the extraction of descriptors at the same time. SuperPoint
is a self-supervised network model based on a fully
convolutional network divided into three phases as shown
in Fig. 5. First, the simple geometry is trained to enable
the SuperPoint network to identify simple feature point
information; second, the trained encoder and feature point
decoder are used to extract the real image, the missing
feature points are sampled, then the feature points are
restored to the original image by reverse single stress
transformation; finally, the real image and the single stress
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Figure 5. Adaptive monophonic transformation.

Figure 6. SuperPoint schematic sketch.

transformation image are input to the whole network,
generating the position and descriptor.

The SuperPoint network is mainly composed of three
parts: shared encoder, feature point decoder, and descriptor
decoder, as shown in Fig. 6. The shared encoder is used
to reduce the dimension of the image, and then the two
decoders extract the image feature points and descriptors
simultaneously according to the shared parameters of the
encoder. Due to the parameter sharing of the feature points
and descriptors, the computational amount is reduced and
the computational efficiency is improved.

The output tensor of the VGG-style shared encoder
is used as the input tensor of two decoders at the
same time, the latter includes two branches, the feature
decoder and the descriptor decoder, and the two decoders
adopt different structures and learn different network
parameters according to different tasks. Table 1 shows the
specific network parameters, each row in the table has
a convolutional channel, the first number is the input
channel, the middle two numbers are the size of the
convolution kernels, and the last number is the number of
convolution kernels.

3.1 Shared Encoder

The encoder has a VGG-like structure with a total of
eight convolutional layers of 3 × 3 size. The first four
convolutional layers have 64 convolution kernels, and the
last four convolutional layers have 128 convolution kernels,
and the nonlinear activation function ReLU is connected
behind each convolutional layer. After the second, fourth,
and sixth activation functions, the maximum pooling of
2 × 2 is used to downsample the image. After eight
convolutional layers and three maximum pooling layers,
the size of the feature map decreases from W×H×1 to

Table 1
SuperPoint Network Structure

Shared Encoder Feature Point
Decoder

Descriptive
Sub Decoder

1×3×3×64 128×3×3×256 128×3×3×256

64×3×3×64 256×1×1×65 256×1×1×256

64×3×3×64 — —

64×3×3×64 — —

64×3×3×128 — —

128×3×3×128 — —

128×3×3×128 — —

128×3×3×128 — —

W/8×H/8×128 at the time of input, which reduces the
dimension of the input image. This encoder structure
strikes a good balance between computational efficiency
and feature extraction capabilities, allowing SuperPoint to
achieve better performance even with limited computing
resources.

3.2 Feature Point Decoder

The input of the feature decoder is the output of
the encoder, that is, W/8×H/8×128, which first passes
through the CR module with the number of channels of 256,
and then enters the convolutional layer with the number
of channels of 65, and then outputs the tensor information
of W/8×H/8×65. Due to the triple maximum pooling of
the encoder, the information of one pixel corresponds to
the pixel information of the non-overlapping 8 × 8 area
size in the original image, and one channel is added for the
case without feature point information, which is exactly 65
convolutional layer channels. The Softmax function is used
to remove the channel without feature point information,
and it becomes W/8×H/8×64. Finally, the size of the
original image is restored by reshape, which is W×H×1,
and the feature points are displayed on the original image.
The value of each pixel in the output image represents
the probability value of whether the corresponding pixel
is a key point. Although the maximum pooling layer will
reduce the resolution of the feature map, it does not
actually reduce the amount of information of pixels, and
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can also help the network learn more robust and abstract
features, so as to improve the performance of detection and
descriptor extraction.

3.3 Descriptor Decoder

The input of the descriptor decoder is also the output of
the encoder, and the dimension of the descriptor is 256,
which is used to compare the similarity between different
feature points. After passing through the CR module with
256 channels, entering the convolutional layer with the
same number of 256 channels, the output is a feature map
of W/8×H/8×256, then the bicubic interpolation is used
to change to W×H×256, and finally the L2 norm is used
to normalise each descriptor. The output of this process is
the descriptor for each key.

3.4 Loss Function

The loss function consists of two parts [16], as shown in (1),
where Lp is the loss function of the decoder that extracts
the key points, and Ld is the loss function of the decoder
that generates the descriptor.

X and D are the feature map and descriptor sub-
feature map of the image output by the network, Y is the
label value of the image feature point, X ′, D′, Y ′ is the
label value of the feature point feature map, the descriptor
sub-feature map and the image feature point output after
the image is input into the network after the monography
transformation, S is the feature point judgment matrix,
and λ is the hyperparameter, which is used to balance the
feature point detection loss and the descriptor loss.

L (X,X ′, D,D′;Y, Y ′, S) = Lp (X,Y ) + Lp (X ′, Y ′)

+λLd (D,D′, S) . (1)

The loss function of the key points is calculated using
the cross-entropy loss:

Lp (X,Y ) =
1

HcWc

Hc,Wc∑
h=1
w=1

lp (xhw; yhw) (2)

lp (xhw; y) = − log

(
exhwy∑65
k=1 e

xhwk

)
. (3)

Hc,Wc are the height and width of the key point
features, respectively;

xhwyhw are the values and label values of the image X
in the (h, w) coordinates, respectively;

K is the number of channels;
xhwk is the value of the image X at the (h, w) position

of the kth channel.
The loss function of the descriptor is as follows:

Ld

(
D,D′, S

)
=

1

(HcWc)2

Hc,Wc∑
h=1
w=1

Hc,Wc∑
h′=1
w′=1

ld
(
dhw, d

′
h′w′ ; shwh′w′

)
(4)

shwh′w′ = f (x) =

1, if
∥∥∥ĤPhw − Ph′w′

∥∥∥ ≤ 8

0, otherwise
. (5)

ld
(
d, d′; s

)
= λd ∗ s ∗ max

(
0,mp − dT d′

)

Figure 7. Polar geometric constraints.

+ (1 − s) ∗ max
(

0, dT d′ −mn

)
(6)

shwh′w′ is 0 or 1;
d′h′w′dhw are the values of the descriptor feature plots

D′ at (h′, w′) and D at (h, w);
phw is the central pixel location of the cell (h, w);
mpmn are the thresholds corresponding to the forward

and reverse directions, respectively;
λd is the hyperparameter that balances the internal

positive and negative losses of the descriptor.
After the original image is downsampled, the points on

the feature map correspond to an 8 × 8 cell in the original
map, shwh′w′ is used to determine whether the pixel
position of the centre of the cell corresponding to the dhw
and d′h′w′ is similar, “1” means that the position is similar,
and “0” means that the position is opposite.

3.5 Camera Pose Estimation and Optimisation

In this paper, the pose estimation is the motion of the
monocular camera, and the input information is 2D pixel
coordinates. Since the motion estimation is based on two
sets of 2D points, the pole constraint is used to solve the
motion [17]. As shown in Fig. 7, I1 and I2 represent the
imaging planes of the previous frame and the current frame
image, O1 and O2 represent the camera centre, l1 and l2
are the polar lines of the feature point x1 and x2, and
the intersection points of the connection line with the O1

and O2 are the pole e1 and e2. The geometric constraint
equation for the poles isxT2 Fx1 = 0

x2 = Hx1
. (7)

F is the base matrix; H is the response matrix.
When the feature points are matched correctly and the
P points are not in the spatial plane, the normalised
plane coordinates and the base matrix satisfy the (7).
If the feature point cannot fall on the pole line due to
the influence of mismatching, you need to calculate the
distance from the x1 and x2 to the l1 and l2 of the
polar line, respectively, and the point is the outer point
when the distance is greater than the threshold. In order
to ensure the calculation accuracy of the basic matrix,

5



the image feature points were filtered out according to
the minimum distance threshold method, and then the
error matching was further filtered out by the RANSAC
algorithm.

The minimum distance threshold method refers to the
distance test of the feature point pair in the image, and
the nearest feature point pair is selected as the minimum
distance. Equation (8) is used to judge the distance of the
feature point matching pair, and when the condition is
satisfied, it is judged to be a correct match, otherwise the
matching pair is eliminated.

Di < αDmin. (8)

Di indicates the ith matching pair;α is the set
threshold;Dmin is the minimum matching distance in the
matching set.

The RANSAC algorithm was used to eliminate feature
mismatching, and firstly, four groups of non-collinear
matching points were randomly selected from the feature
point set to calculate the corresponding homology matrix
H. Then, determine whether the number of feature points
in the current inner point set is greater than the number of
optimal inner point sets, and if so, update the optimal inner
point set and update the number of iterations. Finally,
the number of iterations is judged according to the set
threshold, and if it is greater, the update outside point is
retained, otherwise it will continue to iterate to meet the
requirements.

The ultimate goal of VO is to get a precise trajectory.
Ideally, for a pair of matching pixels pki , pki+1, there must
be pki+1 = Tip

k
i . However, in real life, noise is unavoidable,

and the error ξ must exist, and there is ξi = pki+1 − Tipki .
Our goal is to minimise the reprojection error ξi, leading
to the objective function:

ξ∗ = arg
1

2

k∑
i=1

∥∥∥pji+1 − Tip
j
i

∥∥∥2
2
, (9)

where Ti is the pose transformation between the ith frame
and the i+1st frame.

Therefore, for the camera pose Ti obtained from the
single response matrixH and the basic matrix F , we choose
the smaller value of the minimised reprojection error ξ∗ as
the camera pose.

4. The Experiment and the Results Were Analysed

Experiments quantitatively evaluated the entire monocular
visual odometer system using the publicly available dataset
KITTI and compared the trained SuperPoint model with
the SIFT, ORB algorithms. The hardware platform of this
experiment is Inter I7 12650H CPU and NVIDIA RTX4060,
and the system version is Ubuntu20.04.

4.1 Experimental Dataset

The KITTI dataset was jointly founded by foreign
authoritative institutions and has wide recognition and
influence. It provides rich multimodal data, including
image data, point cloud data, camera correction data, and

Figure 8. Comparison of the trajectories of the three
algorithms: (a) ORB; (b) SIFT; and (c) The algorithm of
this paper.

label data, which provide a comprehensive training and
testing environment. In addition, the KITTI dataset covers
a variety of real-world driving scenarios such as urban,
rural, and highway, and each image may contain up to
15 vehicles and 30 pedestrians, with various degrees of
occlusion and truncation. This diversity helps to improve
the performance and reliability of deep learning algorithms
in visual SLAM.

In this experiment, the visual SLAM highway data
set of KITTI open outdoor scenes is used, and the data
set consists of realistic scenes with the same perspective
and the illumination changes in different scenes. The
KITTI dataset contains images from the left and right
perspectives. In order to ensure the comparison and
evaluation of the experiment, Sequence with five sequences
of 00-04 in the left perspective were selected as the
validation dataset.

4.2 Track Error

The scale of monocular visual odometer is uncertain, and
the back-end optimisation is not done in this paper, so
there will be a cumulative error in the algorithm operation.
In this experiment, the absolute trajectory error is used
to evaluate the algorithm performance. The absolute
trajectory error is calculated using the root mean square
error, and the calculation formula is

s =

√
(
∑n

i=1 ‖sei − sti‖
2
)

n
. (10)

sei represents the estimated coordinates of pose estimation
based on the i-frame image, and sti represents the true
coordinate value of the i-frame image.

In the experiment, the difficult data path KITTI
Sequence 00 was selected as the evaluation sample, and the
ORB algorithm, SIFT algorithm and the visual odometer of
this algorithm were used for the map trajectory comparison
experiment. The evaluation tool was used to evaluate
the absolute trajectory error of different algorithms. The
experimental results are shown in Fig. 8. In Fig. 8, the
dashed line represents the real map trajectory; the solid
line represents the pose estimation trajectory obtained by
each algorithm. From Fig. 8, it can be found that from
the absolute error trajectory diagram, the SIFT effect
is the worst, although the error trajectory of the ORB
algorithm is small in the early stage, but with the increase
of the number of frames, the trajectory error gradually
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Figure 9. Trajectory error plot for part of the sequence 02 and 04.

Table 2
Track Error Comparisons Results Under the KITTI Dataset

00 01 02 03 04 Mean

ORB 6.6535 494.0831 26.8237 1.1475 0.6071 105.8629

SIFT 28.7192 32.6023 35.6984 5.4582 1.2564 20.7469

SuperPoint 8.8623 30.7521 26.8647 0.7952 0.5894 13.5727

increases, and the fitting degree with the real trajectory
decreases. The estimated trajectories obtained by the
proposed algorithm are almost consistent with the real
trajectories. This is due to the drift phenomenon caused by
the accumulation of errors, and the larger the accumulated
error, the more obvious the drift. The results show that the
proposed algorithm has higher accuracy in pose estimation,
is least affected by the cumulative error, and has better
robustness.

Figure 9 shows the trajectory error diagram of the
proposed algorithm on sequences 02 and 04, including
APE, RMSE, Median, Mean, Std.

This experiment tested the KITTI Sequence 00-04
dataset, and the experimental results are shown in Table 2.
Because the KITTI dataset data contains complex lighting
changes and perspective change scenes, the Superpoint
algorithm has good stability and robustness compared with
the other two algorithms due to its unique feature matching
method.

As can be seen from Table 2, compared with the
traditional feature point matching algorithm (ORB, SIFT),
the error of the algorithm on the five maps is somewhat
reduced, and the average absolute trajectory error is
reduced by 87.2% compared with that of ORB and
34.6% lower than that of SIFT. This paper improves the
trajectory error accuracy and improves the robustness.

5. Conclusion

In this paper, self-supervised convolutional neural network
SuperPoint is used to extract feature points and fuse them

with visual odometer, then optimise the feature matching
results according to the RANSAC optimisation algorithm,
and finally make the camera pose estimation according to
the polar geometry constraints. On the KITTI dataset, its
absolute trajectory error decreased by 87.2% and 34.6%
compared with the conventional methods ORB and SIFT,
respectively. Deep learning feature points can express
deeper image information, and SLAM fused with deep
learning feature points has higher accuracy and robustness.
Future work will start from the following two aspects:
(1) Due to the introduction of deep learning model, the

complexity of the algorithm is higher than that of the
visual odometer based on ORB and SIFT, the coding
layer structure of the network can be adjusted, and
the lightweight attention model is used to downsample
the image features to reduce the computational cost
and optimise the running speed of the algorithm.

(2) The bag of word model describes the whole image by
determining which words are defined in the dictionary
appear in an image, so as to transform all descriptors
in an image into a vector, avoiding direct comparison
of descriptors, and the vector represents the presence
of features or not, which has nothing to do with the
spatial position and arrangement order of the object.
However, SuperPoint can extract the feature points
and descriptors simultaneously, and the extracted
descriptors are similar to the descriptors output by
traditional algorithms, so it can also be used to
construct the word bag model.

(3) Because the feature points in the moving region
will greatly reduce the accuracy and robustness of
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positioning, and it is necessary to retain the feature
points in the static region as much as possible, it is
necessary to introduce an object detection algorithm
to detect dynamic targets to further reduce the error
of pose estimation, improve the positioning accuracy,
and improve the visual SLAM algorithm.
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