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Abstract

Microgrid energy storage systems play a crucial role in power

systems, but their state estimation and energy management face

challenges due to the uncertainty and complexity of system state

and energy changes. A particle filter-based method for estimating

the charge state and predicting the lithium-ion batteries lifespan

was proposed to address the issues of state estimation and energy

management in microgrid energy storage systems. At the same

time, a microgrid energy storage system energy management model

was constructed by integrating Markov chain and Monte Carlo

methods. The research results indicated that the SOC estimation

results using the open circuit voltage definition were more accurate

than those using the ampere-hour integral definition, showing an

approximately linear change in voltage within the SOC range of

20%–100%. In terms of microgrid energy management, the total

energy capacity of energy storage batteries and electric vehicle (EV)

batteries was 8 kWh and 16 kWh, respectively. By considering

the prediction of EV and optimising energy management during

electricity usage time, operating costs were reduced. From the above

experimental results, both proposed methods have achieved good

results in state prediction and energy management of microgrid

energy storage systems, providing an effective theoretical basis and

empirical support for the estimation and prediction of lithium-ion

batteries and energy management of microgrids.
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1. Introduction

Due to the high nonlinearity, time-varying, uncertainty,
and multiple constraints of microgrids, accurate estimation
and effective management of system states are quite
challenging. Studying efficient and reliable state estimation
methods and energy management strategies for microgrid
energy storage systems is not only significant for ensuring
the microgrid stable operation, but also a research hotspot
in the field [1]–[3]. Based on the prior art, the proposed
method integrates the advantages of the Markov chain
Monte Carlo (MC) technique under the framework of
particle filter, innovatively reducing the computational
complexity, while maintaining the high precision and
robustness of system state estimation. The method
effectively solves the performance bottleneck of traditional
particle filters in complex dynamic microgrid energy
storage systems by optimising important sampling and
resampling algorithms. In addition, with the help of
advanced algorithm design, this method can enhance the
adaptability of nonlinear and time-varying characteristics
in the state estimation of microgrid energy storage
systems and provide the possibility of real-time calculation.
In terms of energy management strategy, the method
introduces the control theory based on a predictive model,
which optimises energy storage scheduling, improves
operation efficiency, and prolongs equipment life while
ensuring system stability. Through these innovations, the
proposed method provides a new technical approach for
the efficient and reliable operation of microgrids. The
Markov chain MC method is an effective statistical method
widely used for state estimation of complex systems.
However, its high computational complexity makes it
difficult to meet the real-time operation needs of microgrid
systems [4]. On the contrary, particle filter methods have
shown inherent advantages in dealing with estimation
problems of complex systems such as nonlinear and non-
Gaussian [5], [6]. It can improve estimation accuracy and
robustness through importance sampling and resampling
steps. Therefore, research on state estimation of microgrid
energy storage systems based on particle filtering and
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Markov chain MC methods has attracted much attention.
Proper energy management can not only ensure the
continuous operation of microgrids in emergencies, peak
load, and other situations that require a large amount
of electricity but also provide maximum power guarantee
during daily operation, extend the service life of equipment,
and achieve optimisation of efficiency [7]–[9]. Therefore,
researching efficient and convenient energy management
strategies for microgrids can significantly improve the
operational efficiency and service quality of microgrids.
In this context, this article aims to explore a state
estimation method for microgrid energy storage systems
based on particle filtering and Markov chain MC, combined
with effective energy management strategies, to provide
a theoretical basis and practical solutions for microgrid
design and operation.

The research is divided into four parts. The first part
summarises and analyses the current research status, and
the second part proposes a state estimation and energy
management method for microgrid energy storage systems
based on particle filtering and Markov chain MC. The
comprehensive management of microgrid energy storage
systems is carried out from two aspects: lithium-ion (ITO)
battery state of charge (SOC) estimation and energy
management, The third part verifies the effectiveness
of state estimation and energy management methods
for microgrid energy storage systems through simulation
experiments. The fourth part summarises the core research
content.

2. Related Works

In recent years, research on state estimation and energy
management of microgrid energy storage systems has
gradually become more abundant. Meng et al. proposed
two types of distributed estimators, one for asymptotic
estimation and the other for finite time estimation.
Through simulation experiments, it was verified that the
proposed control method can achieve the charge and
discharge balance of all battery cells to meet the total
demand [10]. Khalid et al. discussed in detail the issues
of protecting blind spots and delineating intended islands.
At the same time, a 3 MW/9 MWh microgrid project
at Florida International University and its experimental
results were also introduced [11]. Joshi et al. proposed a grid
frequency regulation control architecture based on voltage
angle deviation at common coupling points. Compared
with traditional frequency drop coating methods, this
scheme achieved a performance improvement of over
20% [12]. Daneshvar et al. used autoregressive integral
moving average and fast-forward selection methods for
risk modelling and achieved intraday dynamic energy
management through horizontal energy allocation. This
method achieved an 8.51% increase in energy costs [13].
Islam et al. proposed a dual optimisation strategy
that considers the scheduling of renewable energy and
battery storage systems. Results indicated that microgrid
operating costs using this strategy were reduced by 7%
and 6% during the scheduling and allocation stages,
respectively [14].

In addition, the application of particle filtering and
Markov chain MC in various fields is gradually deepening.
Pozna et al. developed a novel PF-PSO algorithm that not
only randomly generated particle swarm but also precisely
adjusted the search range. By reducing the cost function
of the PF-PSO algorithm, the energy consumption of
the fuzzy control system can be reduced [15]. Gunatilake
et al. proposed a novel dual antenna system based on
high-frequency radio frequency identification technology,
combined with the Gaussian process and particle filter
algorithm, for high-precision positioning of robots in
pipelines. This system had millimeter-level accuracy and
achieved high-precision positioning up to 50 m without
significant estimation drift. The application effect of
this system in actual water pipes was verified through
experiments [16]. Ballesio et al. studied the filtering
problem of partially observable diffusion and proposed a
resampling method based on optimal Wasserstein coupling.
Considering the mean square error (MSE) of the filter, they
developed a multi-level MC (MLMC) method to improve
the performance of particle filters. The effectiveness of
this method was verified by testing the convergence
of the algorithm in different scenarios and comparing
computational costs [17]. Dalgaty et al. tried to apply
resistance value storage technology to intelligent system
learning for edge computing. They proposed a machine
learning scheme that utilised memory to resist variability
and implemented a Bayesian machine learning model using
Markov chain MC sampling method on 16384 device arrays
that were manufactured. Clinical trials showed that this
method can successfully identify malignant tissues and
arrhythmia and had good performance in up to 10 million
durability tests [18].

Srilakshmi and Singh proposed an optimised operation
strategy for community microgrids based on photovoltaics,
energy storage systems, and electric vehicles (EV), utilising
the bidirectional current flow strategy of EVs to provide
electricity for households and the power grid. The
optimisation was achieved using mixed integer linear
programming, and the effectiveness of this strategy was
demonstrated through comparative analysis [19]. Bakhtiari
et al. proposed an improved Metropolis-coupled Markov
chain MC 3 simulation method to predict the stochastic
behaviour of different sources of uncertainty in independent
renewable energy microgrid planning. The results showed
that the proposed model accurately characterised the
probability distribution, sample continuity, time depen-
dence, correlation between different uncertainty sources,
as well as short-term and long-term trends of uncertainty
sources [20]. Salim et al. proposed two cascaded schemes to
improve power quality, namely, total harmonic distortion
(THD) minimisation and voltage regulation. The results
showed that the proposed scheme ensured power factor,
high efficiency, system power quality, and reliability
under different load conditions by optimising parameters
through a particle swarm optimisation algorithm [21].
Gadanayak and Mallick proposed an intelligent non-guided
protection strategy based on iterative filtering, empirical
mode decomposition, and extreme learning machine for
inverter-dominated microgrids. The results indicated that
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this strategy effectively detected faults and identified fault
phases. It was widely validated in standard microgrid
models with different topologies and operating modes for
both arc and non-arc faults [22].

Existing research on microgrid state estimation faces
challenges in terms of nonlinear and non-Gaussian
distributions: (1) Particle filters and Markov chain MC
methods have been introduced, which are more suitable
for dealing with complex state estimation problems in
microgrids; (2) A new strategy has been developed that
combines state estimation with daily operational decision-
making, improving the precision and efficiency of microgrid
management; (3) A new algorithm has been implemented
that can adapt to the constantly changing conditions of
microgrids, such as the unstable output of renewable energy
and load fluctuations. The effectiveness of these methods
has been verified through simulation, and it is hoped that
they can bring better operational performance and cost-
effectiveness to microgrids.

3. State Estimation and Energy Management of
Microgrid Energy Storage System Using
Particle Filter and Markov Chain Monte Carlo

This article first introduces a particle filter-based method
for estimating charge state and predicting the ITO
batteries lifespan. This method uses an equivalent circuit
model (ECM) to indirectly obtain the SOC of ITO batteries
by constructing a nonlinear mapping relationship. In
addition, the use of Markov chains to obtain the parameters
stationary distribution to achieve optimal estimation has
improved energy management efficiency.

3.1 Charge State Estimation and Lithium-ion
Batteries Lifespan Prediction using Particle
Filter

The ECM characterises ITO battery characteristics
through circuit elements, such as resistors, capacitors, and
voltage sources, and is critical for state estimation and
lifetime prediction. The OCV voltage source describes
the electromotive force of the battery without load, and
its nonlinear relationship with the SOC reflects the true
voltage. The resistance represents an immediate voltage
drop, while the RC network exhibits charge transfer and
polarisation effects. ECM simplifies the electrochemical
process and makes the energy system easy to analyse and
control. The first-order RC model balances simplicity with
precision, as shown in Fig. 1.

In this model, the input variables include the current
(I ) and the open circuit voltage (OCV). the left section of
the circuit, comprising resistors Rd, current-controlled
current sources CN , and capacitors, receives these inputs,
simulating the self-discharge, charge state, and battery
capacity characteristics. The right section includes a
resistor R and a first-order RC network RpCp, simulating
the transient response of the battery during a sudden
change in current. To achieve SOC estimation that
minimises polarisation effects, an online estimation method

Figure 1. A first-order EC for lithium-ion batteries.

using OCV is proposed, and the SOC value is indirectly
obtained through the nonlinear mapping relationship
between OCV and SOC. The SOC refers to a dimensionless
ratio, typically expressed as a percentage, indicating the
remaining capacity of a battery relative to its full capacity.
It is an essential parameter that mirrors the current state of
energy in the battery, serving as a gauge for the remaining
runtime and charge needed. In this investigation, the SOC
is indirectly estimated through the nonlinear mapping of
OCV to SOC, leveraging the constructed battery model to
provide an accurate approximation. OCV is the voltage of
a battery when it is not under any electrical load, meaning
no current is flowing into or out of the battery. It is an
essential parameter for accurately determining the SOC,
as it reflects the equilibrium potential across the battery’s
electrodes and inherently correlates with the battery’s
SOC. The precise characterisation of OCV as a function of
SOC is critical for implementing effective SOC estimation
strategies in energy management systems (EMSs). Firstly,
based on the EC, a discrete state space equation with OCV
as the state variable is constructed.

Assuming that the current direction is consistent with
the arrow shown in Fig. 1, the EC dynamic electrical
characteristics can be expressed as shown in (1).Vp = − 1

RpCp
Vp + 1

Cp
I

Vt = Voc − Vp − IR
(1)

In (1), Vp is the terminal voltage of the RC network
in EC, I is the battery current, Vt is the battery
terminal voltage, Voc is the battery OCV, R is the
battery equivalent ohmic internal resistance, Rp and Cp

are the current equivalent polarisation internal resistance
and polarisation capacitance, respectively. Considering the
nonlinear mapping relationship focv between the OCV and
the SOC of the battery, the derivative expression of Voc is
obtained as shown in (2).

Voc = focv(SOC) · dSOC

dt
= f ′ocv(SOC) · I

CN
(2)

Due to that, the total capacity CN is usually much
greater than the charging and discharging current I,
research will consider Voc as a slowly changing parameter
and assume its derivative to be approximately 0. By
comprehensively considering (1) and (2), a discretised state
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space equation for lithium batteries with OCV as the state
variable can be obtained, as shown in (3).xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk
⇔

Voc,k+1

Vp,k+1

 =

1 0

0 α

Voc,k

Vp,k

+

 0

(1− α)Rp

 Ik + wk

Vt,k =
[
1 −1

]Voc,k

Vp,k

−RIk + vk

(3)

In (3), xk represents the state vector of the system
time k, uk represents the input of k, A and B represents
the coefficient matrix of the state transition equation.
wk ∼ (0, Qk) represents the model process noise that
simulates the measurement error of the current sensor and
the state equation at k, yk represents the output of k, C
and D represents the coefficient matrix of the measurement
process. vk represents the model measurement noise that
simulates the measurement error of the voltage sensor
and the output equation at the system time k. In the
coefficient matrix A, α = e−∆t/RpCp , the sampling period
∆t of the system is taken as 1s. R, Rp, and Cp are
the unidentified model parameters. By using the Bayesian
algorithm for online estimation of state variables Voc and
substituting them into the OCV–SOC relationship curve,
SOCV estimation based on the definition of OCV can be
indirectly achieved.

The study conducts offline identification of the
functional relationship between OCV and SOC and the
parameters to be identified in the EC through low-current
OCV–SOC mapping experiments and battery model
parameter identification experiments. In the discrete state
space equation, the ohmic internal resistance, polarisation
internal resistance, and polarisation capacitance are the
parameters to be identified, and they will change with
changes in the battery state. The study not only considers
the battery charge state but also considers the discharge
rate impact of the battery on model parameters. The
battery model parameter identification experiment is
shown in Fig. 2.

The low-current OCV–SOC experiment utilised a
direct relationship between the magnitude of the current
and the degree of polarisation. By using a very small
current, the difference between the diffusion rate of
particles inside the battery and the electrochemical
reaction rate is minimised as much as possible. Therefore,
the terminal voltage during battery operation can be
approximated as OCV, thus achieving online measurement
of OCV during battery operation. The voltage prediction
curve is generated by applying the identified parameters
within an ECM, simulating the terminal voltage response
under dynamic load conditions, based on SOC–OCV
mapping and internal resistance changes. Then, the
particles are filtered and updated based on their weights.
Finally, the optimal estimation of the state is obtained
through a posterior density function based on the updated
particle swarm. In Bayesian filtering problems, state
estimation can be simplified to solving the expected value

Figure 2. Battery model parameter identification experi-
ment.

of a posterior distribution, as shown in (4).

E [g (x) |y1:T ] =

∫
g (x) p (x |y1:T ) dx (4)

In (4), g : Rn → Rm is an arbitrary function and
p (x |y1:T ) is the x posterior probability density under
known measurement values y1, . . . , yT . In importance
sampling π (x |y1:T ), based on obtaining samples using
importance distribution, the expected value of the posterior
distribution to be solved can be solved as shown
in (5).

E [g (x) |y1:T ] =

∫ [
g (x)

p (x |y1:T )

π (x |y1:T )

]
π (x |y1:T ) dx (5)

In (5), x(i) are the samples drawn from the importance
distribution p (x |y1:T ) is the function whose expected value
under the posterior distribution x(i) ∼ π (x |y1:T ) , i =
1, . . . , N we are interested in estimating, and N is the total
number of samples. and based on this, MC approximation
is performed on the importance sampling by integrating the
expected integral and normalising the constant to obtain
the expected value of the posterior distribution.

Assuming that the future operating conditions of the
battery are known, the uncertainty introduced by battery
state estimation is considered, specifically focussing on the
standard deviation of the measurement error, denoted as
σ. This standard deviation σ represents the measurement
uncertainty in the current and voltage sensors, which
affects the SOC estimation accuracy. The impact of
different SOC definitions on the accuracy of the remaining
discharge time (RDT) prediction is studied, with particular
attention to how σ influences the SOC estimation and
consequently the RDT forecast. The RDT is a predictive
metric that estimates the duration for which a battery can
continue to discharge until it reaches its predetermined
lower voltage limit. The RDT is crucial for planning and
managing energy consumption, particularly within a micro-
grid energy storage system. Firstly, assuming the current
moment is t, substituting the future current reference value
Ĩ of the battery into the SOC definition equation can
obtain the predicted SOC value as shown in (6).

SOCV,i = SOCV,t −
∑

i
t

Ĩj ·∆t
Ca

; j = t, t+ 1, . . . , i− 1

(6)4



Figure 3. RDT prediction framework.

Figure 4. V2H system structure.

In (6), Ca is the discharge capacity of the battery,
which has a certain nonlinear relationship with SOCV .
Based on the SOCV estimation during a complete discharge
process, the functional relationship is calculated as shown
in (7).

Ca (SOCV,k+1) =
Ik

SOCV,k − SOCV,k+1
; k = 1, 2, . . . , N

(7)

In (7), Ik represents the battery current at the moment
k, SOCV,k and SOCV,k+1 represent the estimated battery
charge state at the moment, and N represents the total
time length during a complete discharge process. The RDT
prediction framework proposed in the study is shown in
Fig. 3.

Then, based on the reference value of future operating
conditions and the predicted value of SOC, combined
with the measurement equation in the battery state space
equation, the battery terminal voltage prediction curve is
obtained. Then the predicted curve is compared with the
lower voltage limit and the time when the battery discharge
ends is found, which is the first time it falls below the lower
voltage limit. Finally, the predicted RDT of the battery
is obtained by calculating the difference between the end
time of battery discharge and the current time.

3.2 Microgrid Energy Storage System Energy
Management using Markov Chain Monte
Carlo

The grid-connected microgrid studied consists of solar pho-
tovoltaic power generation systems, loads, energy storage
batteries and battery management systems (BMSs), EVs,
and EMS. These subsystems are connected to the AC bus
of the microgrid through power electronic converters to

achieve energy exchange. The energy exchange between the
microgrid and the power grid is carried out through PCC.
Figure 4 shows the system’s overall structure.

MCMC is a random sampling method that utilises
the properties of Markov chains to obtain the stationary
distribution of the desired parameters based on the
state transition matrix. Then, using the idea of MC,
repeatedly sampling the stationary distribution to obtain
the estimated values of the parameters to be estimated.
To construct an irreducible and non-periodic Markov
chain with a stationary distribution consistent with the
posterior distribution of the parameters to be solved, it is
necessary to find a suitable state transition matrix. The
detailed stationary conditions of Markov chains are used
to determine whether the matrix P is a state transition
matrix corresponding to a stationary distribution π. For
non-periodic Markov chains, P and π(x) satisfy (8) for all
i and j.

π(i)P (i, j) = π(j)P (j, i) (8)

The probability distribution π(x) is said to be a
stationary distribution of P . To achieve the parameters’
optimal estimation to be solved, it is necessary to construct
a state transition matrix P that satisfies detailed stationary
conditions. The study adopts the MCMC sampling method
and introduces an acceptance rate a(i, j) to adjust the
randomly given transition matrix Q, so that the entire
process meets the detailed stationarity conditions. The
calculation is shown in (9).

π(i)Q(i, j)a(i, j) = π(j)Q(j, i)a(j, i) (9)

The range of a(i, j) values is [0,1], indicating the
probability that a randomly given matrix Q can serve
as the target P . According to the detailed stationary
conditions, the state transition matrix corresponding to
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Figure 5. Penalty coefficient experiment.

parameters π(x) to be solved can be expressed as P (i, j) =
Q(i, j)a(i, j). However, due to the small probability of
the randomly selected matrix Q being close to the target
matrix P , a(i, j) in MCMC sampling is usually low, which
affects the sampling efficiency. To solve this problem,
the Metropolis–Hastings (M–H) algorithm was studied to
improve it. The M–H algorithm is a widely used MCMC
improvement algorithm that improves sampling efficiency
by improving the calculation method of acceptance rate
a(i, j). a(i, j) calculation is shown in (10).

a(i, j) = min

{
π(j)Q(j, i)

π(i)Q(i, j)
, l

}
(10)

When the prior distribution of the parameters to be
solved is known, using M–H sampling can obtain a set of
sampling points that converge to the parameter stationary
distribution, that is, the posterior parameters distribution.
By solving the mean of these sampling points, parameter
inference based on maximum posterior estimation can be
obtained.

To safely operate the household microgrid, avoid
overcharging and discharging of the battery system, and
extend battery service life, this study sets restrictions on
the system as shown in (11).

SBT,min ≤ SBT,i ≤ SBT,max

PBT,min ≤ PBT,i ≤ PBT,max

i = 1, 2, . . . , N

(11)

In (11), N is the total number of periods within
the daily scheduling range, SBT,i is the battery energy
state in the i time, SBT,min and SBT,max are the lower
and upper limits of the energy state, respectively. The
research settings are 20% and 100%. PBT,i is the battery
power during the specified period. The maximum allowable
charging power and maximum allowable discharge power
of the energy storage battery system are PBT,min and
PBT,max, respectively, set at -6kW and 6kW in the research.
The power integration method SBT,i is calculated as (12). SBT,i = SBT,i−1 − δSBT,i−1

δSBT,i−1 = PBT,i−1 · TS/EBT

(12)

In (12), TS is the duration of the period. δSBT,i−1

indicates the amount of change in the battery energy state
during the period from i− 1 to i. EBT is the total battery
energy.

Considering the uncertainty brought by EVs in motion
and the energy storage capacity of their batteries, when
EVs are connected to the microgrid, they play a dual role
in controllable load and mobile energy storage. EVs can
be seen as a supplement and extension to energy storage
batteries, thereby improving the microgrids’ economic
benefits. The study evaluates the impact of KEV,i value on
SEV,i through experiments and designs a KEV,i regulatory
strategy based on this. The experimental results are shown
in Fig. 5.

From Fig. 5, as the KEV,i value of EV predicted off-
grid time increases, the increase in EV energy state before
the predicted off-grid time becomes more and more signifi-
cant. The value of the penalty coefficientKEV,i has a signif-
icant impact on the SOE of EV in the i period. As the value
of KEV,i increases, EVs tend to perform charging opera-
tions as controlled loads to meet their own electricity needs.
On the contrary, EVs are more inclined to serve as mobile
energy storage, discharging to supply power to the load
during high electricity prices. A KEV regulation strategy
based on the probability of off-grid is studied and designed.
When the off-grid probability of EV in the i period is less
than 50%, the KEV,i value will be less than 1.35; on the
contrary, the value of KEV,i will be greater than 1.4.

Assuming that the photovoltaic power generation, load
power consumption, EV grid connection time, and initial
SOE are known, the optimisation goal is to minimise the
economic cost of one day. The costs considered include
purchasing electricity cost from the power grid, EV battery
discharge loss cost, and the economic penalty cost caused
by insufficient EV energy. Ignoring additional costs such
as operation and maintenance, the operating limitations of
energy storage batteries and subsystems such as EVs are
used as constraints, and the problem is constructed as (13).

min

N∑
i=1

[PG,i · PR,i · Ts + fEV,i + fdis,i]

s.t.

SBT,min ≤ SBT,0 +

i=1∑
k=0

δSBT,k ≤ SBT,max
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Figure 6. Microgrid energy management process.

SBT,min ≤ SBT,0 ≤ SBT,0 +

N−1∑
k=0

δSBT,k

≤ SBT,max

PBT,min ≤ PBT,i ≤ PBT,max

SEV,min ≤ SEV,0 +

i−1∑
k=0

δSEV,k ≤ SEV,max

PEV,min ≤ PEV,i ≤ PEV,max

PG,i + PPV,i + PBT,i + PEV,i ≥ PL,i (13)

The decision vector x to be optimised is shown in (14).

x = [(PBT,1, PEV,1) , (PBT,2, PEV,2) ,

. . . , (PBT,N , PEV,N )] (14)

In (14), PG,i is the grid power in the i period, PR,i

is the grid electricity price in the i period, PPV,i is
the photovoltaic power generation in i, and PL,i is the
load electricity consumption in the i period. Microgrid
energy management algorithms strategically dispatch and
store energy, optimising economy and reliability through a
multi-objective and constrained decision framework. The
algorithm processes data from renewable energy sources
such as solar and load demand in real time and integrates
grid schedules with information on the status of EVs and
battery storage. The goal is to operate microgrids at the
lowest total cost, reducing the cost of purchasing electricity
from the grid, battery life loss, and penalties for insufficient
EVs. It solves complex optimisation problems, considers
battery safety, and regulates EV loads, and achieves an
efficient dynamic balance between supply and demand.

In the simulation experiment of the microgrid energy
management algorithm, 3 kW photovoltaic equipment and
daily electricity consumption statistics of residential users
are used. The total energy capacity of energy storage
batteries and EVs batteries is 8 kWh and 16 kWh,
respectively. The specific energy management process of
the microgrid is shown in Fig. 6.

In the state estimation and energy management of
microgrid energy systems, particle filtering, and Markov
chain MC methods are used for predicting the lifespan
of ITO batteries. The study integrates key parameters,
such as battery capacity, charge and discharge cycles,
cycle efficiency, and temperature influence in detail
for the characteristics and behaviour model of ITO
batteries. These parameters are dynamically updated
through particle filtering methods and applied to real-time
estimation of SOH to predict the service life of batteries.
Through this integration, EMS can more accurately predict
battery life, and provide support for decision-making, such
as maintenance scheduling and operational cost control,
thereby improving the reliability and efficiency of the entire
microgrid system.

4. State Estimation and Energy Management
Simulation Experiment Analysis of Microgrid
Energy Storage System

The study used low-current OCV–SOC mapping
experiments to explore the nonlinear mapping relationship
between the OCV and battery charge state. In terms of
energy management in microgrid energy storage systems,
research was conducted on 24-h dynamic economic
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Figure 7. Offline identification results of battery model: (a) the nonlinear mapping relationship between OCV and SCO;
(b) the nonlinear relationship between ohmic internal resistance and SOC; (c) nonlinear relationship between polarisation
internal resistance and SOC; and (d) nonlinear relationship between polarisation capacitance and SOC.

Figure 8. Estimation results of SOC under constant current operating conditions: (a) open circuit voltage estimation; (b)
terminal voltage estimation; (c) battery current; and (d) comparison of estimated values.

scheduling experiments of microgrid energy storage
systems in different scenarios. The experiment aimed to
testify the operational effectiveness of the proposed energy
management framework in the time-of-use electricity price
scenario.

4.1 Charge Estimation and Life Prediction State
Experimental Analysis for Lithium-ion
Batteries

A low-current OCV–SOC mapping experiment was
conducted to explore the mentioned nonlinear mapping

relationship. The battery experiment used the 18650 nickel
cobalt manganese ternary lithium battery produced by
Sony, with the model being VCT6. ”The parameters of the
test battery are shown below [23].

The experimental platform used for battery experi-
ments mainly consists of three parts. The battery testing
system produced by Xinwei Company, model CT-8004-
5V200A-NTFA, has the function of serving as a power
source and controllable load for testing batteries. It can
perform various battery experiments such as constant
current and constant capacity testing, pulse charging
and discharging testing, etc. The upper computer was
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Figure 9. SOC estimation results under dynamic operating conditions: (a) open circuit voltage estimation; (b) terminal
voltage estimation; (c) battery current; and (d) comparison of estimated values.

Table 1
The Experimental Battery Parameters

Parameter Value

Rated capacity 3000 mAh

Lower limit voltage 2.0 V

Upper limit voltage 4.25 V

Lower limit temperature −20 ◦C

Upper limit temperature 60 ◦C

used to set the operation process of the battery testing
system and display experimental data in the form of
a graphical interface. The thermostat provided stable
ambient temperature conditions for testing the tested
battery. In addition, to evaluate the computational
efficiency of the proposed algorithm, the CPU time
required during the operation of the power estimation and
life prediction algorithms was recorded. The calculation
specification used the relevant algorithm to describe the
state of the battery, which was implemented in the
standard data processing flow. The algorithm was executed
on a computer equipped with an Intel Core i7-9700
CPU @ 3.00GHz processor with 16GB of RAM. In the
experimental analysis of the battery state, the average
CPU time required was 45 s, of which the pretreatment
of the experimental data took 10 s, and the actual
running time of the mapping algorithm was 35 s, which
showed the feasibility of the processing algorithm in terms
of computational efficiency. All tests were conducted in
a Windows 10 operating system environment without
external graphics processing unit (GPU) acceleration,

Figure 10. Prediction curve: (a) time of use; (b)
photovoltaic power generation prediction; and (c) load
electricity consumption prediction.

using MATLAB R2020a as the development and execution
environment.

At the same time, the study also conducted battery
model parameter identification experiments to obtain the
nonlinear relationship between ohmic internal resistance,
polarisation internal resistance, and polarisation capaci-
tance with battery SOC under different current conditions.
The results of two sets of experiments are shown in Fig. 7.

In Fig. 7(a), the OCV shows an approximately linear
change in the SOC range of 20%–100%, while it shows
an accelerated decrease trend when the SOC ranges from
10% to 0%. In Fig. 7(b), the variation trend of ohmic
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Figure 11. Simulation results of three EMS strategies in EV conventional travel under the time of use electricity price
scenario: (a) cost simulation results; (b) PBT simulation results; (c) PEV simulation results; (d) SOEBT simulation results;
and (e) SOEEV simulation results.

internal resistance is the same under different current
conditions, decreasing first and then increasing with the
discharge process, and there is a longer plateau period in
the middle range of SOC. In Fig. 7(c) and (d), polarisation
internal resistance and capacitance maintain a similar
trend with changes in SOC. Results indicated that the
current has a small impact on the model parameters,
and the relationship curve accuracy between the model
parameters and SOC has a significant impact on the model
accuracy.

The algorithm’s SOC estimation results were compared
and analysed under 2.5C constant current and dynamic
operating conditions to verify the method’s effectiveness.
The estimated results of SOC under constant current
operating conditions are shown in Fig. 8.

In Fig. 8(a) and (b), when there is a significant change
in battery current, there may be some error in the estimated
value. However, as the current stabilised, the error
gradually decreased, indicating that the algorithm can
effectively track the measured value. During the battery
soak process, the estimated open-circuit voltage gradually
approached the measured value, accurately achieving an
online estimation of open-circuit voltage. Figure 8(c)

shows the battery current during the experiment, where
the purpose of the quiescent operation is to evaluate the
estimation effect of the OCV. Figure 8(d) compares the
results of two types of SOC estimation. During the
constant current discharge process, both show a downward
trend. During the quiescent process, the estimation
results based on the definition of OCV had a positive
steady-state error compared to the results based on
the definition of ampere-hour integration. Considering
that the polarisation effect during battery discharge
may affect SOC, the estimation algorithm based on
the definition of OCV can more accurately reflect the
battery’s actual behavioural characteristics, considering
the impact of the polarisation effect on SOC. Its estimation
results under dynamic operating conditions are shown
below.

In Fig. 9(a) and (b), the estimated terminal voltage
almost coincides with the measured value, and during the
battery soak process, the estimated open-circuit voltage
tends to approach the measured value, indicating that the
algorithm can achieve good open-circuit voltage estimation
and terminal voltage tracking capabilities under dynamic
conditions. In Fig. 9(d), SOC estimation results based on

10



Figure 12. Simulation results of EV unconventional travel under time-of-use electricity price: (a) cost simulation results; (b)
PBT simulation results; (c) PEV simulation results; (d) SOEBT simulation results; and (e) SOEEV simulation results.

the definition of OCV have a positive steady-state error.
This indicates that the proposed estimation algorithm
based on the definition of OCV can better reflect the
recovery effect caused by the polarisation effect under
dynamic operating conditions.

4.2 Energy Management of Microgrid Energy
Storage System Simulation Experiment

The study analysed the 24-h dynamic economic dispatch
results of microgrid energy storage systems in different
scenarios. The experiment aimed to test the operational
effectiveness of the energy management framework in
the time-of-use electricity price scenario. The predicted
curves of time-of-use electricity price, photovoltaic power
generation, and load power consumption are shown in
Fig. 10. To determine the predicted curves for time-of-
use electricity price, photovoltaic power generation, and
load power consumption, the study employed machine
learning algorithms that utilised historical data as input
variables. For the prediction of time-of-use electricity price,
market historical data along with demand and supply
patterns were analysed. The photovoltaic power generation
prediction model considered historical light intensity data
and temporal variables to project the generation curve.

Load power consumption forecasted leverage residential
electricity usage statistics to identify daily consumption
peaks. These predictive models were crucial for the
development of an effective energy management framework
within the microgrid.

In Fig. 10, the prediction curve is the output of
historical data and machine learning techniques. In the
prediction of photovoltaic power generation, the model
used the historical data of light intensity and time as
input to reveal the trend of daily power generation over
time, in which the red curve shows that the power
generation reaches the highest point at noon and decreases
significantly at both ends of the morning and evening. Load
electricity consumption forecast adopted the historical
statistical data of residential electricity consumption as
input and obtained the peak period of daily electricity
consumption through analysis, which was represented by
two significant peaks of the blue curve in the morning and
evening. According to this, it is found that at noon, the
photovoltaic power generation reached a peak of about 2
kW, while at 8 AM and 6 PM, the value was close to zero.
Daily residential electricity consumption forecasts showed
that the load increased rapidly to about 1 kW in the
morning and may rise to a higher level of about 1.5 kW
in the evening. These data reflected that there may be a
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mismatch between residential peak electricity consumption
and photovoltaic power supply, indicating the necessity of
adjusting the energy storage system strategy. To keep the
EV connected to the grid within a scheduling cycle (24
h), the scheduling start time was set to 10:00 AM. The
simulation results of three EMS strategies under the time
of use electricity price during EV conventional travel are
shown in Fig. 11.

In Fig. 11(a), at around 18:00, the results of the
optimisation framework without considering EV prediction
have additional costs compared to the optimisation
framework proposed in the study. This is because the
optimisation framework did not know the probability of
EV leaving the grid. To meet the power demand of EVs
leaving the grid, the penalty coefficient needed to be
maintained at a large value to enable EV to charge as
soon as possible and maintain SOC at a certain level after
connecting to the microgrid. The changes in EV power
and SOC under this optimisation framework are shown
in Fig. 11(c) and (e). The optimisation framework that
did not consider EV prediction only charged EV as a
controllable load, reducing its ability to increase economic
benefits for microgrids as mobile energy storage. Figure 12
shows the simulation results of EV unconventional travel
under time-of-use electricity price.

Figure 12 shows the comparison results between the
proposed optimisation framework and the optimisation
framework without considering EV prediction in the case
of unconventional EV travel (19:45–20:45). According to
the adjustment strategy of the penalty coefficient, after
the EV first arrived at the microgrid according to the
regular travel pattern (at 17:30), it needed to send the
next unconventional travel plan to the EMS. The EMS
adjusted the penalty coefficient based on this to meet
the electricity demand of the EV’s unconventional travel.
Therefore, both optimisation frameworks optimised the EV
after its initial connection to the microgrid. However, when
the EV was connected to the microgrid for the second time
(at 20:45), the optimisation framework without considering
EV prediction cannot determine the predicted time of the
next departure of the EV from the microgrid. Therefore, it
was necessary to immediately charge to meet the electricity
demand when the EV left the grid at unknown times in the
future, resulting in an increase in system operation costs.

5. Conclusion

A particle filter-based method is proposed for estimating
the SOC and predicting the lifespan of ITO batteries,
crucial for addressing energy management challenges
in microgrid energy storage systems. Additionally, the
integration of Markov chain MC techniques enhances
energy management within these systems. The findings
indicate that the SOC estimates, derived from the
definition of OCV, exhibit high accuracy. Notably, a
nearly linear relationship between OCV and SOC was
observed within the 20%–100% SOC range. Simulations
of energy management in a microgrid storage system,
incorporating 3 kW photovoltaic modules and daily
residential energy usage statistics, were conducted. The

Symbol Table

Symbol Definition

OCV Open Circuit Voltage

SOC State of Charge

Rd Resistor simulating self-discharge and battery
capacity characteristics

CN Current controlled current source

R Battery equivalent Ohmic internal resistance

Rp Polarisation internal resistance

Cp Polarisation capacitance

Vp Terminal voltage of the RC network

Vt Battery terminal voltage

I Battery current

focv Nonlinear mapping relationship between
OCV and SOC

dSOC/dt Rate of change of SOC with time

xk State vector of the system at time k

uk Input of the system at time k

A, B Coefficient matrices of the state transition
equation

wk Model process noise at time k

yk Output of the system at time k

C, D Coefficient matrices of the measurement
process

vk Model measurement noise at time k

∆t Sampling period of the system

SOCV SOC estimation based on the definition of
open circuit voltage

Qk Covariance of the process noise wk

simulations revealed that the energy storage battery and
the EVs battery had capacities of 8 kWh and 16 kWh,
respectively. The implementation of a time-of-use elec-
tricity pricing model demonstrated that the optimisation
framework, which included EV usage predictions, yielded
lower operational costs than frameworks without such
predictions, thereby enhancing the economic efficiency of
energy management. These results substantiate that the
methodologies employed facilitate precise SOC estimation
and battery lifespan prediction, alongside improved energy
management for storage systems.
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