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Abstract

This paper aims to bridge the gap between classic model base

observer and intelligent observer based on the model base and

probability distributions to monitor the plant which is affected by

actuator fault and sensor noise simultaneously. The paper includes

the implementing and designing of two new optimal actuator

observers which also relies on two optimal theories. The first new

optimal actuator fault observer is a model base observer based

on Lyapunov conditions while, the novelty of the second optimal

actuator observer comes from introducing a fault diagnosis algorithm

based on a sequential sampling filter (SSF) as a prominent part of

the algorithm to filter the diagnosed fault in using the rules of the

algorithm. The filters depend on the likelihood ratio, which consists

of two hypothetical distributions; the target distribution and the

sampling distribution. The new intelligent observer has given rise

to innovative algorithms in the field of fault detection and diagnose

observer. Moreover, the algorithms verify Lyapunov conditions. In

addition, to demonstrate the integrity of the observers, a comparison

has been made in the presence of white sensor noise, which is the

main reason for inaccurate measurement in addition to two types

of actuator faults; Gaussian and non-Gaussian. The study used

to verify the performance, where two physical and relative error

criteria have been used to evaluate the performance. However, the

simulation results appear the flexibility of the second observer to

diagnose the actuator fault with sensor noise together due to the

number of parameters in diagnosing rules and parameters of the two

probabilities.
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1. Introduction

The research in fault tolerant control (FTC) and prognosis
has gotten attention due to the significant complexities
in manufacturing industrial systems with the height
maintenance cost. The main strategies of FTC and
prognosis are based on implementing fault detection and
diagnosis observers where there are benefit points, such as;
identifying and estimating the magnitude of the fault that
has still not been catered for, thus predicting new faults,
reducing the risk associated with fault launching new ideas,
helps the controller learn faster to overcome the fail and
introduces innovative solutions rather than adding more to
known ones.

For decades, researchers have been trying to introduce
new observation algorithms. The classification of fault
and noise has expanded the field of knowledge, where
Gaussian and non-Gaussian fault and noise have been
mainly considered in dynamic systems. In addition, the
modification of the observers depends on the type of
location of the fault where the additive observers deal with
the parameters faults [1]–[10] whereas actuator observers
are organised to deal with the fault in inputs and shed light
on the impact of the observers [11]–[19].

Many researchers in the automation field have been
attracted to fault-tolerant control as a critical strategy
for designing the controller to overcome failures or sudden
shutdowns of systems [20]–[22].

The design of a controller possesses integrity with
a varied or fixed suitably to guarantee satisfactory
performance [23]. Some researchers prefer to use the
term FTC [21], [24] whereas others prefer reliable
control [25], [26].

However, to avoid failure or unnecessary maintenance,
FP in machines has been the goal of many papers. The
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Figure 1. Diagnosing of actuator faults and sensor noise.

observers used to estimate the next stage of the machine
faults in addition to the stochastic algorithm [20], [22], [27]–
[34] while [35] introduced a new fuzzy and sequential
important sampling filter to implement a new nonlinear
observer.

Wang and Winters [36] established a methodology
for prognosis using neuro-fuzzy techniques for recurrent
dynamic systems. Adams and Nataraju [37] found a
nonlinear dynamics framework to prognosis the faults by
developing an analytically sound means for extracting
features.

Al-Bayati and Wang [38] introduced three linear
actuator fault observers to observe the plant that suffered
an actuator fault but without sensor noise. The diagnosed
fault was an actuator fault for two observers, while the
diagnosed fault was an additive fault for the third observer.
Observers relied on three optimal theories where the
diagnosed fault the first and third observers was based on
the Lyapunov function with two positive definite matrices.
In contrast, the second observer implied three positive
definite matrices. This paper is an extension of the research
in [38] which presents two new types of actuator fault
observers to deal with an actuator fault in the prescience
of sensor noise which also relies on two optimal theories.
The objective of this paper how to design an observer
can estimate the actuator fault and sensor noise in the
real plant simultaneously optimal actuator fault diagnosis
observer (AFO) and intelligent optimal actuator fault
diagnosis observer (IAFO). Thus, the observer (AFO) is
designed to be an optimal observer and includes fault
detection and diagnosis rules based on pre-specified gain
matrices to achieve two optimal Lyapunov conditions. At
the same time, the observer (IAFO) has been supported
with a novel intelligent fault algorithm based on fault
detection and diagnosis rules and a sequential sampling
filter (SSF). In addition, the rules achieve two optimal
Lyapunov conditions, whereas the filer depends on selecting
two appropriate distributions, a significant distribution
and a nominal distribution, on obtaining a high likelihood
ratio.

However, the structure of writing the paper is as
follows: Section 2 presents the design of a new optimal
actuator fault observer (AFO) whereas the criteria to
evaluate the performance of the proposed observers are
introduce in Section 3. Moreover, Section 4 demonstrates

the proposed two optimal observers. Finally, the conclusion
and discussion for the obtained results included in Section 5
while the proving of the two optimal theorems supposed in
Appendix.

2. Design a New Optimal Actuator Fault Diagnosis
Observers

To design an observer to diagnose the actuator fault and
sensor noise in the real time system together, two new
observers ADO and IADO as shown in Fig. 1 have been
introduced. The observer ADO based on rules with two
definite matrices while IADO depends on SSF and rules
based on one definite matrix. Consequently, the rules in
IADO has single definite matrix and the parameters of
the distributions in the filter. The implantation of the SSF
consists of the following points:
1. Likelihood ratio which is a ratio of two distributions;

target distribution and sampling distribution.
2. The likelihood ratio is used to be a weight of a considered

function.
3. The weights are normalised or unnormalised.

2.1 The Model of the System

The model of the system in [38] based effected only by
the actuator fault while in this paper the model of the
discrete linear system has been expressed to deal with
hybrid undesirable effects that are an actuator fault and
sensor noise as follows:

x (k + 1) = Ax (k) +BLff (k)u (k) (1)

The immeasurable states is x (k) ∈ Rna while u (k) ∈
Rnin is a vector of the inputs nin. y (k) ∈ Rp denotes
the measurable outputs vector p where known constant
matrices A ∈ Rna×na , B ∈ Rna×nin , C ∈ Rp×na . However,
f (k) represents the actuator fault vector and the sensor
noise s (k) ∈ Rp has been represented as an additional
vector.

2.2 Design a New Intelligent Optimal Actuator
Fault Diagnosis Observer (IAFO)

The observer shown in Fig. 2 has an ideal diagnostic
algorithm verified in Theorem 1 where Lyapunov function
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Figure 2. The block diagram of the intelligent optimal actuator fault diagnosis observer (IAFO).

based on the SSF has been supposed. The discrete linear
model for actuator fault observers is proposed as follows

x̂ (k + 1) = Ax̂ (k) +Bλ̂ (k)u (k) +H (y (k)− ŷ (k)) (2)

Where the states of the observer is x̂ (k) ∈ Rna

and ŷ (k) ∈ Rp denotes the measurable outputs p vector
of the observer. To important matrices are; the filtered
fault λ̂ (k) ∈ Rrin and the gain matrix of the observer
H ∈ Rna×na which verifies the Lyapunov condition.
The residual r (k) ∈ Rp which is used to evaluate the
performance is represented as follows

r (k) = y (k)− ŷ (k) (3)

2.2.1 Design of a Sequential Sampling Filter (SSF) for
IADO

In this paper, the SSF has been used where weights are
unnormalised. To filter the fault, the expectation of the
diagnosed fault f̂ (k) is written as follows:

E
[
f̂ (k)

]
' 1

Ns

Ns∑
k=1

Pk

(
f̂ (k)

)
f̂ (k) (4)

where Pk

(
f̂ (k)

)
is a distribution that calculates the

expected value of the error, but due to the complexity
of the distribution, two distributions have been proposed;
the target distribution δ (k) and the sampling distribution

β (k), which draws samples. So the probability Pk

(
f̂k

)
will

be rewritten as [39].

π (k) = Pk

(
f̂k

)
=
δ (k)

β (k)
(5)

This is also called the likelihood ratio. Distribution
β (k) is the distribution of importance and δ (k) is the
nominal distribution. Furthermore, importance sampling
gives high recognition when it works well through the of
a good selection of distributions’ parameters. Hence, the
distribution π (k) is considered weight as follows:

π (k) =
δ (k)

β (k)
(6)

π (k) =
δ (k) /β (k)∑Ns
k=1 δ (k) /β (k)

(7)

Furthermore, the expectation will be as follows:

E
[
f̂ (k)

]
' 1

Ns

Ns∑
k=1

δ (k)

β (k)
f̂ (k) (8)

Distributions will be rounded for normalisation [40]:

δ (k) =
1

Z1
δ̂ (k) (9)

In addition, the importance of weight π̂ (k) has been
redefined to be as follows:

π̂ (k) =
Z2

Z1

δ̂ (k)

β̂ (k)
(10)
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Z2

Z1
=

Ns∑
k=1

δ̂ (k)

β̂ (k)
β (k) (11)

Z2

Z1
' 1

Ns

Ns∑
k=1

δ̂ (k)

β̂ (k)
(12)

The probability β (k) has been approximated twice:
once for the main term and once to normalise the
importance weights as follows:

Ê
[
f̂ (k)

]
=

1

Ns

Ns∑
k=1

π̂ (k)f̂ (k) (13)

However, there is no guarantee that β (k) or δ (k) will
be normalised, so the second form of approximation (13)
assumes both are normal and will not be equal to the
original in expectation.

µ
{
E
[
f̂ (k)

]
− Êk

[
f̂ (k)

]}
= 0 (14)

The expected variance will be reduced using the
importance sampling method when the sample count
is increased [39]. As quantified in [41], the asymptotic
variance σ2

f will be as follows [42], [43]:

variance
(
Ê
[
f̂ (k)

])
=
σ2
f

Ns
(15)

For further simplification

variance
(
Ê
[
f̂ (k)

])
=

1

Ns

 Ns∑
k=1


(
f̂ (k)

)2

(δ (k))
2

β (k)


−
(
E
[
f̂ (k)

])2

 (16)

It is safe with protection from its failures. Suppose
the numerator in (16) goes to zero slower β (k), which

means that variance
(
Ê [f (k)]

)
→ ∞. By incorporating

these expressions into this research paper, we can enhance
the filter effect on fault diagnosis.

However, they should be used in appropriate contexts
where the important sampling method faces one of the
biggest problems; poor sampling distribution β (k) which
means poor parameter selection of sample distribution

leads to an estimate of large variability Ê
[
f̂ (k)

]
[40].

A non-zero sample distribution was chosen to overcome
the problem, which is also δ (k) selected non-zero support
by reducing the α− divergence as following:

D (δ (k) ||β (k))

=
4

1− α2

(
1−

Ns∑
k=1

(
(δ (k))

(1+α)
2 (β (k))

(1−α)
2

))
(17)

Zero is avoided in this range and will usually choose a
β (k) that covers δ (k). So choose the sampling distribution
as in rejection sampling to prevent the ‘blow up’, where
δ (k) ≤ Kβ (k) and K is constant.

Furthermore, the effective sample size ASSN is used
to evaluate the impact on the simulation variance of
increasing sample size depending on the weight. Therefore,
an appropriate sample size ASSN is used to assess the
effect on simulation variance to increase the sample size
depending on weight in (13) [44].

ASSN =
Ns

1 + variance (π̂ (k))
(18)

2.2.2 Fault and Noise Diagnosing Rules for IADO

The concept of the algorithm is based on the filtering of the
diagnosed fault f̂ (k) ∈ Rrin using the sequential sampling
algorithm [39]. The filter uses likelihood ratio in (5). Thus,
the new adaptive diagnostic rules for obtaining the filtered
fault can be formalised as follows:

λ̂ (k) = π (k) f̂ (k) k > kf f̂ (k + 1)

= −Γλ̂ (k) λ̃ (k) = (f (k) + s (k))− λ̂ (k) λ̃ (k) → 0

(19)

If there is no fault in the plant; f̂ (k) is a set of

f̂Hk = 1nin×1 them which λ̂ (k) is a set of λ̂ (k) = 1nin×1

while
(
Γ = ΓT

)
is proposed pre-specified gain and π (k) is

the likelihood ratio in (5). So, the dynamic error e (k + 1)
has been calculated as follows:

e (k + 1) = x̂ (k + 1)− x (k + 1) (20)

Substituting the algorithm with error in (37), the error
will be as follows:

e (k + 1) = Ax̂ (k) +Bπ (k) λ̂ (k)u (k) (21)

It can also represent as

e (k + 1) = (A−HC)x̂ (k) +Hy (k) +Hs (k)

−Ax (k) +Bλ̃ (k)u (k) (22)

Using the assumption that Ā = A− HC, the dynamic
error can be expressed as follows.

e (k + 1) = Āe (k) +Hs (k) +Bλ̃ (k)u (k) (23)

Theorem 1: Suppose that the gain matrix of the
adaptive observer can be obtained by satisfying the following
conditions.

ĀP ĀT − P = −Q1 (24)

where P = PT , Q1 = QT1 and Q2 = QT2 are the positive
definite, Ā is a Hurwitz matrix and the ( Ā, B) is completely
controllable.

2.3 Design a New Optimal Actuator Fault
Diagnosis Observer (AFO)

The observer ADO as shown in Fig. 1 breaks the mould
by proposing a new an optimal diagnose algorithm as in
Theorem 2. In addition, The model of the observer for the
plant in (1) has been expressed as follows:

x̂ (k + 1) = Ax̂ (k) +Bf̂ (k)u (k) +H(y (k)− ŷ (k)) (25)
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Figure 3. The block diagram of the new optimal actuator
fault diagnosis observer (AFO).

The gain matrix H ∈ Rna×na achieves the Lyapunov
condition while x̂ (k) ∈ Rna is the states of the observer.
ŷ (k) ∈ Rp denotes the measurable outputs p vector for the
observer.

2.3.1 Fault and Noise Diagnosing Rules for ADO

The fault diagnosis algorithm has been designed to detect
and diagnose the fault f̂ (k) by selecting an observer
gain vector H based on following rules for the adaptive
diagnostic algorithm:

r (k)→ 0 (26)

f̃ (k) = f̂ (k)− (Lff (k) + s (k))f̂ (k + 1)

= −Γ1f̂ (k)− Γ2r (k)u (k) k > kf (27)

where Γ1 = ΓT1 and Γ2 = ΓT2 which are pre-specified gain
matrices. fH (k) = 1r×1 until a fault is detected.

Theorem 2: The adaptive observer in (2) can be
obtained by verifying the following conditions:

ĀP ĀT − P = −Q1 (28)

Where P = PT , Q1 = QT1 , Q2 = QT2 are the positive
definite and Ā is a Hurwitz matrix and the pair (Ā, B) is
entirely controllable [38].

3. Performance Evaluation

Evaluating the performance based on error and calculated
criteria for relative error. The amount of physical error in
the prediction is absolute, while the relative error shows
how the estimates relate to the magnitude of the diagnosed
fault. Some statistical criteria used as root mean squared

error (ry), mean absolute error (my), and variance absolute
error (vy) utilise for absolute error.

While a correlation coefficient (cy) has been found
for relative error where the expression (ȳ, ¯̂y) represent the
mean of the plant output (y) and the mean of the observer
output (ŷ), respectively.

ry =
1

Ns

√√√√ Ns∑
k=1

(ŷ (k)− y (k))

2

(29)

my =
1

Ns

Ns∑
k=1

|ŷ (k)− y (k)| (30)

vy =
1

Ns

Ns∑
k=1

(ŷ (k)− y (k)−my) (31)

cy =

∑Ns
k=1 (y (k)− ȳ)

(
ŷ (k)− ¯̂y

)√∑Ns
k=1 (y (k)− ȳ)

2∑Ns
k=1

(
ŷ (k)− ¯̂y

)2 (32)

4. Case Study and Results

In this section, a DC servo motor is used to study the
factors and success of algorithms to deal with both types
of faults (Gaussian and non-Gaussian) in the system in the
presence of sensor noise. DC servo motor is a second-class
system with multiple inputs and multiple outputs. The
continuous time model of a DC motor without fault or noise
as a state space form can be expressed as follows [6], [38].

ẋ(t) =

İA(t)

ω̇(t)

 =

−ar/La −mf/al

mf/Ic −vf/Ic

IA(t)

ω(t)


+

1/al 0

0 −1/Ic

av(t)
Tl(t)

 (33)

The continuous time system [45] can be discretised
using the sampling time of 0.1 s to obtain the discrete-time
model in the presence of fault and noise as follows:x1 (k + 1)

x2 (k + 1)

 =

−0.0120 −0.1535

0.0545 0.6949

x1 (k)

x2 (k)


+

0.19 0.02

.019 −0.02

f1 (k)

f2 (k)

0.4661 0.9199

0.9199 −4.4021

u1 (k)

u2 (k)


(34)

The likelihood ratio (5) assumed that it was based on
the target distribution δ (k) that use the Chi distribution
(with an non-integer DOF parameter; DOF represents the
mean of the Chi-square) where Kδ = 0.4.

δ (k) =
(
f̂ (k)

)(Kδ−1)

e−
(f̂(k))

2

2

, f̂ (k) ≥ 0 (35)

While the sample distribution β (k) used Gaussian
distribution which can be expressed as following:

βk =
kc√
2πσβ

e
−
(
µβ−f̂(k)

2σβ

)2

, f̂ (k) ≥ 0 (36)
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Table 1
The Performance for the First Outputs of the Observers IAFO and AFO

Fault type Observer
type

ry my vy cy

White fault Mean = 0, variance = 0.5 (White sensor noise) IAFO 2.305865 1.100561 -0.957368 -0.034569

AFO 6.025085 1.784024 -1.7737276 -0.008784

Coloured fault Mean = 0.5, Variance = 2 (White sensor noise) IAFO 2.202556 1.103885 -1.2326292 -0.033700

AFO 6.381026 1.853089 -1.9046964 -0.091624

Non-Gaussian fault [0.01 + 0.6 sin(x)] (White sensor noise) IAFO 1.887358 0.997372 -0.9471871 0.01091208

AFO 5.358581 1.627397 -1.6312927 -0.01879913

Table 2
The Performance for the Second Outputs of the Observers IAFO and AFO

Fault type Observer
type

ry my vy cy

White fault Mean=0, Variance = 1.5 (White sensor noise) IAFO 1.142485 0.773330 -0.76319 0.4389157

AFO 11.63176 2.515447 -2.66237 0.1145048

Coloured fault Mean=0.5, Variance = 2 (White sensor noise) IAFO 2.202556 1.103885 -1.23262 -0.033700

AFO 6.381026 1.853089 -1.90469 -0.091624

Non-Gaussian fault [0.01 + 0.6 sin(x)] (White sensor noise) IAFO 1.0095794 0.7123865 -0.71282 0.45705471

AFO 10.676883 2.3186366 -2.38544 0.08061537

Figure 4. The first outputs of the plant, IAFO and AFO (white fault) - with white sensor noise.

where kc = 5.8 are the Chi DOF parameter, multiplicative
constant to make, δk < kcβk. , σβ =

√
1.29, µβ = 0

represent standard deviation and mean, respectively. To
study the observers’ activity; different types of actuators
faults in presence of sensor noise as follows:

1) The sensor noise is assumed to be white noise (variance
= 1 and mean = 0).

2) Three types of actuator faults are applied to the system
as follows:
a. White fault (Mean = 0, variance = 0.5).
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Figure 5. The first outputs of the plant, IAFO and AFO (coloured fault) - white sensor noise.

Figure 6. The first outputs of the plant, IAFO and AFO (non-Gaussian fault) - white sensor noise.

b. Coloured fault (Mean = 0.5, Variance = 2).
c. Non-Gaussian fault [0.01 + 0.6 sin(x)].
The results of performance criteria have been studied

to verify the effectiveness of each observer design. Table 1
shows the values of performance criteria for the first output.
In contrast, Table 2 demonstrates the performance for the
second output.

Moreover, Figs. 4–6 appear the first output for
the plant, the observers (IAFO) and (AFO) where the
diagnosing of first outputs of IADO are closer to the plant
while the ADO has more gap in diagnosing.

In contrast, Figs. 7–9 show the diagnosing of second
outputs for IAFO are better than AFO in the presence

the sensor noise and three types of actuator fault;
white fault, coloured fault, and non-Gaussian fault,
respectively.

In comparison, the results shown in the tables and
figures reflect the novelty of the intelligent observer
(IAFO), which is better than the observer (AFO). The
high efficiency and flexibility of (IAFO) are because of
the fault detection algorithm of (IAFO) which has been
developed to be more flexible due to containing more
rules and parameters. Hence, this research paves the way
for future progress in the use of filters within the fault
detection algorithm through the filters using other types of
probabilities.
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Figure 7. The second outputs of the plant, IAFO and AFO (white fault) - with white sensor noise.

Figure 8. The second outputs of the plant, IAFO and AFO (coloured actuator fault) - white sensor noise.

5. Conclusion

In the realm of actuator fault detection and diagnosis
observer, this paper presents a new idea for fault diagnosing
observes where two types of actuator fault observers have
been introduced which also relies on two optimal theories,
assuming the plant affected by the sensor noise and
actuator fault in the same time. The new AFO implies
diagnosing of both an actuator fault and sensor noise
simultaneously. While the new IAFO is an intelligent type
which includes diagnosing rules that match the proposed
Lyapunov conditions and SSF. In addition, the SSF is based
on the likelihood ratio depending on two distributions;

target distribution and sampling distribution. The rules of
the two observers involve obtaining matrices to verify the
proposed Lyapunov conditions.

Furthermore, proper selection of a good distributions
is critical to improving the observer score (IAFO). At
the same time, to evaluate the performance of observers,
sensor noise is considered white noise, while three types
of actuator faults have been applied on multi-input
and multi-output system to evaluate the performance of
observers: white noise, coloured noise, and non-Gaussian
error. Two physical and relative error criteria have been
considered performance parameters; root mean square
error, average absolute error, absolute error of variance,
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Figure 9. The second outputs of the plant, IAFO and AFO (non-Gaussian fault) - white sensor noise.

and correlation coefficient. Finally, the obtained results
can reap the benefits of the simulation which showed that
the intelligent observer (IAFO) was superior in diagnosing
actuator fault and white sensor noise compared to the
observer (AFO).

Appendix

Proof of Theorem 1. Define the following Lyapunov
function

}
(
e (k) , λ̃ (k)

)
= (e (k))

T
Pe (k) +

(
λ̃ (k)

)T
Γ−1

1 λ̃ (k) (37)

It can be written as follows

∆~
(
e (k) , λ̃ (k)

)
=

1

2
(} (e (k + 1))− } (e (k))) (38)

For further declaration, it can be represented as

∆~
(
e (k) , λ̃ (k)

)
=

1

2
(e (k + 1))

T
Pe (k + 1)

− (e (k))
T

Pe (k) +
(
λ̃ (k)

)T
Γ−1λ̃ (k + 1) (39)

It can also be expressed as

∆~
(
e (k) , λ̃ (k)

)
=

1

2

[
Āe (k) +Bλ̃ (k)u (k)

]T
P
[
Āe (k) +Bλ̃ (k)u (k)

]
(40)

∆~
(
e (k) , λ̃ (k)

)
=

1

2
(e (k))

T [
ĀTPĀ− P

]
e (k)

+
1

2

(
Bλ̃ (k)u (k)

)T
P
(
Bλ̃ (k)u (k)

)
(41)

By supposing

∂ (k) =
(
Bλ̃ (k)u (k)

)
(42)

Therefore, it can be rewritten as

∆~
(
e (k) , λ̃ (k)

)
= −1

2
(e (k))T Q1e (k) +

1

2
(∂ (k))T P∂ (k)

+
(
λ̃ (k)

)T (
BTP −Q2

)
e (k) (43)

To make the term zero or negative, uk will be derived,
and (19), (41) are substituted into (48)

∆~
(
e (k) , λ̃ (k)

)
≤
(
−1

2
λ1 ‖e (k)‖ ‖Γ‖ ‖π (k)‖

∥∥∥λ̂ (k)
∥∥∥

1

2
‖P‖ ‖∂ (k)‖min

)
(44)

Furthermore, the inequality can be expressed as

∆~
(
e (k) , λ̃ (k)

)
≤
(
−1

2
λ1 ‖e (k)‖ ‖Γ‖ ‖π (k)‖

∥∥∥λ̂ (k)
∥∥∥

1

2
‖P‖ ‖∂ (k)‖min

)
(45)

Raleigh–Ritz inequality, Cauchy–Schwartz inequality,
index matrix for the first term and the norms for the second
and third terms, respectively.

∆~
(
e (k) , λ̃ (k)

)
≤ ‖e (k)‖−1

2
λ1 ‖e (k)‖ 1

2

‖P‖ ‖∂ (k)‖
‖e (k)‖

‖Γ‖ ‖π (k)‖
∥∥∥λ̂ (k)

∥∥∥
‖e (k)‖ min


(46)
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Suppose there is an existence (η1, η2) > 0 no matter
how small (κ1, κ2) > 0, as follows

‖e (k)‖ < κ1 ⇒
‖∂ (k)‖
‖e (k)‖

< η1, (47)

To ensure the theory of stability of Lyapunov

∆~
(
e (k) , λ̃ (k)

)
≤ ‖e (k)‖(

−1

2
λ1 ‖e (k)‖ 1

2 1
‖P‖2 ‖Γ‖ ‖π (k)‖

min

)
(48)

Thus, the condition will be met as follows

λ1 ‖e (k)‖min
1
2 ‖P‖+ ‖Γ‖ ‖π (k)‖ (η1, η2)

(49)

Proof of Theorem 2. Define the following Lyapunov
function

v
(
e (k) , f̃ (k)

)
= eT (k) Pe (k) + f̃T (k) Γ−1

2 f̃ (k) (50)

It can be shown that

∆v
(
e (k) , f̃ (k)

)
=

1

2
(v (e (k + 1))− v (e (k))) (51)

It can be further expressed as

∆v
(
e (k) , f̃ (k)

)
=

1

2
eT (k + 1) Pe (k + 1)− eT (k) Pe (k)

+f̃T (k) Γ−1
2 f̃ (k + 1)

+f̃T (k) Γ−1
2 f̂ (k + 1)

(52)

∆v
(
e (k) , f̃ (k)

)
=

1

2

[
Āe (k) +Bf̃ (k)u (k)

]T
P
[
Āe (k) +Bf̃ (k)u (k)

]
−eT (k) Pe (k)

(53)

For further simplification

∆v
(
e (k) , f̃ (k)

)
=

1

2
eT (k)

[
ĀTPĀ− P

]
e (k)

+
1

2

(
Bf̃ (k)u (k)

)T
P
(
Bf̃ (k)u (k)

)
+f̃T (k) Ce (k) + f̃T (k) Γ−1

2 f̂ (k + 1)

+f̃T (k) Γ−1
2 Γ1f̂ (k) (54)

Due to the sensor noise

∆v
(
e (k) , f̃ (k)

)
=

1

2
eT (k)

[
ĀTPĀ− P

]
e (k)

+
1

2

(
Bf̃ (k)u (k)

)T
P
(
Bf̃ (k)u (k)

)
(55)

By assuming } (k) =
(
Bf̃ (k)u (k)

)
, it can be

rewritten as follows

∆v
(
e (k) , f̃ (k)

)
= −1

2
eT (k)Q1e (k) +

1

2
(} (k))T (k)P} (k)

+f̃T (k) (BTP −Q2)e (k)

+f̃T (k) Cs (k) + f̃T (k) Γ−1
2 f̂ (k + 1)

+f̃T (k) Γ−1
2 Γ1f̂ (k) (56)

Furthermore, by substituting (1), (2), and (5) into (12)
as well as uk would be derived to make the term zero or
negative therefore, it can be as

∆v
(
e (k) , f̃ (k)

)
≤

 &− 1
2λ1 ‖e (k)‖ 1

2 ‖P‖ ‖} (k)‖
min

& + ‖C‖ ‖s (k)‖+
∥∥Γ−1

2 Γ1

∥∥∥∥∥f̂ (k)
∥∥∥

(57)

The Raleigh–Ritz inequality has been used for the
first term whereas the Cauchy–Schwarz inequality and the
index matrix norm used for the second and third terms. As
result, the derivate function will be as

∆v
(
e (k) , f̃ (k)

)
≤ ‖e (k)‖

&− 1
2λ1 ‖e (k)‖ ‖Γ

−1
2 Γ1‖‖f̂(k)‖
‖e(k)‖ min

& + ‖C‖‖s(k)‖
‖e(k)‖ + 1

2
‖P‖‖}(k)‖
‖e(k)‖


(58)

This means that for any γ1, γ2, γ3 > 0, no matter how
small, there is η1, η2, η3 > 0, the results it is as follows

‖e (k)‖ < γ1 ⇒
‖} (k)‖
‖e (k)‖

< η1, ‖e (k)‖

< γ2 ⇒
‖C‖ ‖s (k)‖
‖e (k)‖

< η2, (59)

For any (ζ1, ζ2, ζ3) > 0 there is (η1, η2, η3) > 0 and
‖ek‖ < (ζ1, ζ2, ζ3), the inequality will be as follows

∆v
(
e (k) , f̃ (k)

)
≤ ‖e (k)‖

(
−1

2
λ1 ‖e (k)‖ 1

2 1
‖P‖2 ‖C‖

‖s (k)‖3
∥∥Γ−1

2 Γ1

∥∥
min

)
(60)

To check the stability ∆v
(
e (k) , f̃ (k)

)
< 0 in which

the linear system is asymptotically stable by the Lyapunov
stability theorem, the condition that must be met is the
following inequality.

(η1, η2, η3) >
λ1 ‖e (k)‖min

1
2 ‖P‖+

∥∥Γ−1
2 Γ1

∥∥+ ‖C‖ ‖s (k)‖
(61)
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