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Abstract

With the rapid development of new energy technology, how to

effectively integrate and consume these energy sources has become

a major challenge for power grid scheduling and management.

To solve the optimisation problem of new energy consumption in

microgrids (Mgs), this study proposes to improve the particle swarm

optimisation (PSO) algorithm and apply it to the Mg combination

optimisation model. Based on the PSO algorithm, a simulated

annealing (SA) algorithm is introduced to construct a SA particle

swarm algorithm for new energy consumption. At the same time,

combined with a Mg example in a certain city in China, a comparison

was made through experiments with multi-objective PSO (MOPSO),

traditional particle swarm algorithm, and sparrow search algorithm

(SSA). The experimental results showed that the SAPSO algorithm

ensured that the new energy consumption rate of the Mg system

reached 100%, to achieve the effect of environmental protection

and energy conservation. The research results of this study have

achieved the economic and environmental goals of Mg operation

while meeting user load demands and have played an important

role in the field of new energy consumption. The study optimised

the consumption plan of new energy, improved the utilisation rate

of renewable energy, reduced the operating cost of Mg systems,

and provided important theoretical and practical guidance for Mg

management.
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1. Introduction

Microgrid (Mg) has the advantages of autonomy, reliability,
and sustainability, which can realise flexible scheduling
of renewable energy [1]. However, operation scheduling
and optimisation of Mg are facing challenges, such
as complexity and multi-objective, which need to find
effective optimisation methods to solve. The common
combinatorial mathematical model refers to the standard
mathematical model widely used in the branch of
combinatorial mathematics to solve various permutation
and combination problems. These models are commonly
used to study the ordered or unordered combination,
selection, arrangement, and other problems of elements
under specific specified conditions. Common combinatorial
mathematical models are used to calculate probabilities,
optimise, and solve scheduling problems, and are widely
applied in computer science, physics, operations research,
and many other fields. The combinatorial optimisation
model refers to the combinatorial optimisation problem
of multiple energy sources in Mg systems. The goal
of the combinatorial optimisation model is to find
the optimal energy combination scheme to meet the
needs of the Mg system, maximise energy utilisation
efficiency, reduce energy costs, or reduce dependence on
traditional energy sources. With the increasing proportion
of renewable energy in the energy supply, Mg, as a
small and highly intelligent energy system, has become
increasingly important. However, due to the instability and
intermittency of renewable energy, how to better integrate
and absorb new energy has become an important issue
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in Mg management. Therefore, the motivation of this
study is to find an optimisation model to better manage
and absorb new energy and improve the reliability and
economy of Mgs. As a heuristic optimisation algorithm,
the particle swarm optimisation algorithm (PSO) has a
simple implementation [2]. In Mg operation, PSO can
solve the combinatorial optimisation problem of Mg.
The traditional PSO algorithm often suffers from pre-
mature convergence and is prone to getting stuck in
local optimal solutions. To address this issue, this study
introduces several objective functions: a minimum cost
function that considers the economy of Mg, an operation
cost function focusing on environmental protection, an
objective function that balances both economy and
environmental protection, and an objective function for
energy consumption of micro gas turbines (MT). To solve
the optimisation problem of Mg combination, an improved
PSO for new energy consumption is proposed using PSO
and simulated annealing (SA), which is applied to the
optimisation of Mg.

This study includes four parts. The first part is the
research results of domestic and foreign scholars on Mg and
its combined optimisation. The second part discusses the
common mathematical model of Mg combination, proposes
the objective function in Mg combination, and constructs
an improved SAPSO to solve the objective function. In
the third part, the algorithm is tested and applied to
an example for analysis. The fourth part summarises the
article and points out the shortcomings.

2. Related Works

Mg is a distributed energy system, which can not only
operate independently but also connect with the main grid
to balance energy supply and demand. Some experts have
done relevant research on Mg. Le and Phung found that
when the Mg operated in island mode, faults may occur.
Therefore, in consideration of sustainable power supply,
the frequency was restored to the allowable range through
the primary and secondary adjustment of the generator.
The PSO determined the distributed disconnection power
to improve the voltage quality [3]. Ndukwe et al. proposed
a Lora-based wireless communication system for Mg data
transmission. The system allowed multiple sensors to be
connected to Lora transceivers and collected data from
various units in the Mg. By testing the data transmission
efficiency, wireless communication system effectiveness was
verified [4]. To solve Mg’s security problem, Cepeda et al.
proposed an intelligent fault detection system for Mg based
on local measurement and machine learning technology. By
integrating the ML system, each smart electronic device
in the Mg can detect faults independently. Through the
analysis of simulation experiments, the effectiveness of this
method was proved [5]. An et al. found that electric vehicles
can alleviate the peak load, transmission, and storage
problems of the Mg by deploying the Internet of Things.
To solve personal information leakage, an online location
privacy protection scheme was proposed. This scheme can
distribute the power and charging stations in the Mg to

electric vehicles in the case of a limited energy supply.
Results showed good effectiveness [6].

By solving the Mg combinatorial optimisation prob-
lem, the balance among power system cost, efficiency, and
environmental protection can be achieved. Some experts
have made relevant achievements on the combinatorial
optimisation problem of Mg. Masuda et al. studied the
operation and demand response of Mg. The scheme applied
the distributed asynchronous primal-dual algorithm to deal
with the communication delay and update delay of some
subsystems, and algorithm effectiveness was proved [7].
Ghaemi and Salehi found that renewable energy increased
net load variability in Mg, so the system may have the
problem of power interruption. Based on this, considering
the limitations of investment, the benders decomposition
method solved the problem in the system. Experiments
showed that this method can reduce system cost and
achieve new energy maximum output [8]. Krishna et al.
found that as renewable energy spread, the uncertainty of
power generation in Mg needed to be solved. However, Mg
dispatch and planning were affected by the volatility of
renewable energy, load demand, and price. Based on this,
taking renewable energy, user load demand, and price as the
objective function, the decision tree can solve the problem.
Experiments showed that it can realise Mg combinatorial
optimisation [9]. Zeinal-Kheiri et al. proposed a new
Mg system in view of the uncertainty caused by the
prediction errors of renewable energy generation, load, and
market price in Mg. The system solved this problem by
defining different virtual queues to meet the time coupling
constraints. The results showed that this system can well
improve the combinatorial optimisation in Mg [10].

Using PSO combined with ANISN code, Wu et al.
proposed a multi-objective optimisation method for the
design of lightweight radiation shielding in nuclear reactors
and verified its reliability through MCNP. The results
indicated that this method effectively improved the
quality of the shielding scheme [11]. Using the PSO
algorithm, Abbaszadeh et al. proposed a new parameter
optimisation method for the SVC model selection problem
and successfully applied it to the geological modelling of
the Yiju porphyry copper deposit. The results showed
that this method effectively improved the accuracy of
identifying alteration and mineralisation zones and was
superior to traditional grid search methods [12]. Using
BP neural network and multipole coupling theory, Chen
et al. proposed a structural parameter optimisation method
for optimising the spectral performance of all-dielectric
sub-surfaces, and improved Fano resonance using genetic
algorithm, sparrow search algorithm (SSA), and PSO
algorithm. The results showed that PSO significantly
improved the quality factor and achieved high modulation
depth, providing a new optimisation strategy for optical
micro/nanostructure design [13].

To sum up, most of the existing research focuses
on the Mg itself, while there is a lack of intelligent
solution algorithms for the Mg combinatorial optimisation
problem. Therefore, based on PSO, this study introduces
SA for PSO optimisation. Based on the SAPSO, the
Mg combinatorial optimisation problem under the new
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Figure 1. Structure diagram of microgrid model.

energy consumption is solved to achieve the balance of
cost and environmental protection in the Mg operation.
The improved PSO algorithm proposed in this study has
made significant improvements in parameter adjustment
and optimisation strategies to enhance the algorithm’s
adaptability and convergence speed, especially in the face
of complex high-dimensional problems, exhibiting higher
efficiency and stability. Thus, in solving optimisation
problems with dynamic changes, research methods fill the
existing research gap, and provide new perspectives in both
theory and practice.

3. Microgrid Combination Optimisation Model
Construction

To achieve optimal solution calculation of the objective
function of Mg combination cost, environmental protection,
comprehensive benefits, and energy consumption under the
new energy consumption, this chapter is divided into three
parts to build the combination optimisation model. The
first part discusses the common combined mathematical
model of Mg, which paves the way for the construction of
subsequent models, the second part proposes the objective
function of Mg combination, and the third part constructs
an improved SAPSO to solve the objective function.

3.1 Microgrid Combination Mathematical Model

Mg is a distributed energy system composed of traditional
power generation energy, new energy, and energy storage
equipment in a specific geographical area. The Mg can
operate independently and can also be interconnected with
the main grid to achieve mutual interaction of energy and
balance of supply and demand. By combining renewable
energy with traditional power generation, Mg can better
cope with the volatility and uncertainty of energy supply.
The grid-connected Mg includes three elements: micro
power supply device, user load, and energy storage device.
The Mg model structure is shown in Fig. 1.

Micro power devices include photovoltaics (PV), wind
turbine (WT), MT, fuel cell (FC), and waste incineration
power plant (WIP). The energy storage device is mainly
lead acid batteries (BAT), and the load is mainly the
power demand of users’ daily life. PV system converts
light energy into electric energy through semiconductor
materials, but the daily sunshine intensity is different, so
the power generation by light energy has fluctuation. PV

system output power is shown in (1) [14].

PPV = fPVYPV
IT
IS

[1 + αp(Tcell − Tcell,STC)] (1)

In (1), PPV is the PV output power, fPV is the power
derating factor, YPV is the capacity of PV, IT and IS are
the solar irradiation intensity, αp is the power temperature
coefficient, and Tcell and Tcell,STC are the PV panel surface
temperature. WT is also a kind of renewable energy power
generation technology, and its power output is proportional
to wind speed (WS). WT system output power is shown in
(2) [15].

PWT =



0 0 ≤ v ≤ vci
PN

v−vci
vN−vci vci ≤ v ≤ vN

PN vN ≤ v ≤ vCO

0 vCO ≤ v

(2)

In (2), PWT refers to WT output power and PN is the
output power under rated WS. v represents the actual WS,
vci represents the cut-in WS, vCO represents the cut-out
WS, and vN represents the rated input WS. Therefore,
when the WS is greater than 0 and less than the cut in WS,
WT will not generate electricity. When WS is less than
the cut, WT also does not generate electricity. When the
WS is greater than the cut in WS and less than the rated
WS, WT is proportional to the WS. The MT system uses
methane, natural gas, or fuel oil and air as the medium,
which is different from the traditional diesel generator and
has high efficiency and low pollution. Since the amount of
fuel and air entering the MT is controllable, the optimal
operation method of the Mg can be calculated manually.
During grid-connected operation, the output power of WT
is stable after reaching a stable working state, as shown in
(3) [16].

PMT = 0.000293Qf (HV)sηt

(
PS

PSS

)(
TS
T

)
(3)

In (3), PMT represents WT actual output power, Qf is
the fuel gas flow rate, and (HV)s is the fuel gas heat rate at
standard temperature and standard atmospheric pressure.
ηt represents WT total efficiency, PS represents the gas
pressure value, PSS represents the standard pressure, TS
represents the standard temperature, and T represents the
actual temperature. FC can convert chemical energy in fuel
and oxidants into electric energy at a constant temperature.
Hydrogen-rich gas, liquid, CO, or gas are usually used as
fuel. FC has no mechanical parts, so it has high conversion
efficiency and less harmful gas emissions. Hydrogen energy
is a kind of clean energy, so the regulation of FC is also a
work of combinatorial optimisation. The output of FC is
shown in (4) [17].

UFC = NcellNSU
′
FC

IFC = NSI
′
FC

PFC = UFCIFCo

(4)
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In (4), UFC and IFC represent FC output voltage and
current, PFC represents FC output power, Ncell represents
the number of each group of FC, NS represents the
number of FC groups. U ′FC and I ′FC represent the output
voltage and current of a single FC. WIP system mainly
includes feeding equipment, incinerators, and purification
equipment. The purification equipment can treat the
pollutants in the incinerator to achieve the purpose of
pollution-free emissions. The output power of WIP is shown
in (5) [18].

PWIP = µWIPGWIP (5)

In (5), PWIP is the WIP output power, µWIP is the
factor of converting waste per unit into electric energy,
and GWIP is the waste weight per unit. There are two
kinds of energy storage devices in Mg, namely, chemical
energy storage and physical energy storage. Bat is a kind of
chemical energy storage device, which has low cost and wide
application on the premise of ensuring the consumption of
new energy. Bat power is shown in (6) [19].

SSOC(t+ 1) = SSOC(t)− EBAT(t)

VBAT
(6)

In (6), SSOC(t+1) represents the battery storage power
at the next time and SSOC(t) is the battery storage power
at t. EBAT(t) indicates the charge and discharge capacity of
BAT in the t period. A positive value indicates discharge,
a negative value indicates charge, and VBAT indicates the
total capacity of BAT.

3.2 Mg Portfolio Optimisation Model
Construction for New Energy Consumption

In Mg operation, the power generation of PV and WT
systems is uncontrollable, and the cost of the system will
decrease sharply for every one percentage point increase
in the utilisation rate of PV and wt. Because higher
utilisation often means higher energy output, this can
lower overall system costs by reducing the demand for
other more expensive energy sources. Therefore, finding an
optimal technical and economic balance point will be an
important measure to improve the new energy utilisation
rate. Taking into account the fuel, maintenance, equipment,
and interaction cost of the Mg system, the minimum cost
objective function considering only the Mg economy is
obtained as shown in (7) [20].

minC1 =

T∑
t=1

(Cf (t) + Cma(t) + Cdep(t) + kCgrid(t)) (7)

In (7), minC1 refers to the Mg operation cost with the

economy as a goal,
∑T

t=1 (·) is the sum of daily consumption
costs, and Cf (t) is the fuel consumption cost at time t, in
kWh. Cma(t) represents the equipment maintenance cost,
Cdep(t) represents the depreciation loss of each power unit,
and kCgrid(t) represents the interaction cost of the public

grid. The calculation of each cost is shown in (8) [21].
Cf (t) =

∑N
i=1 Cfuel × 1

LHV
×

∑T
t=1

Pi(i)
ηi(t)

Ci,ma(t) =
∑N
i=1 MAi(Pi,t) =

∑N
i=1 KMAi,t × Pi,t

Ci,dep(t) =
∑N
i=1 DEPi(Pi,t) =

∑N
i=1

ADCi
PN,i×8760×cfi

× Pi,t

(8)

In (8), Cf (t) is mainly the consumption cost of natural
gas, Cfuel represents the price, which is 3.75 yuan/m3. i
counts micro power sources and LHV is the low calorific
value at 9.7 kWh/m3. Pi(i) represents the output power
of the i -th generation unit at time t, and ηi(t) represents
generation unit working efficiency. Ci,ma(t) represents i -th
unit maintenance management cost, Pi,t represents i -th
unit output power, and KMAi,t represents the maintenance
cost coefficient. Ci,dep(t) represents i -th unit depreciation
loss, ADCi represents unit annual average depreciation
cos, PN,i represents the maximum output power, and cfi
represents unit capacity factor. The objective function
of operating cost when only environmental protection is
considered is established based on the treatment cost of
discharged pollutant gas, as shown in (9) [22].

minC2 =

T∑
t=1

J∑
j=1

αj(

N∑
i=1

βijPit+βmjPmt) (9)

In (9), C2 refers to the operation cost when only
environmental protection is considered, that is, the
treatment cost of harmful gases, such as CO, CO2, SO2,
and NOx, and αj refers to the treatment cost of class J
polluting βij and βmj, respectively, represent the emission
coefficient of class J pollution gas in Mg and large grid, and
Pit and Pmt represent the actual working power of Mg and
large grid. The objective function considering the economy
and environmental protection is shown in (10) [23].

minC3 = [C1, C2]

C3 = λ1C1 + λ2C2

λ1 + λ2 = 1

(10)

In (10), minC3 represents the minimum operation cost
considering the economy and environmental protection,
and λ represents the weight coefficient. Since the electric
energy generated by PV and WT is converted from
renewable new energy, considering that the natural gas
in MT is not renewable energy, the objective function for
determining the energy consumption of MT is shown in
(11) [24].

F (ui,t, Pi,t) =

T∑
t=1

N∑
i=1

(ui,tFi(Pi,t)∆t+ ui,t(1− ui,t−1)Si)

(11)

In (11), F (ui,t, Pi,t) represents the total natural gas
consumption of all MT, ui,t indicates the working state of
the i -th MT, with a value of 0 or 1, respectively, indicating
off and on. Si indicates the start and stop consumption of
the i -th MT and Pi,t is the i -th MT active power. Since
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the Mg operation is not unconstrained, certain constraints
can ensure the power balance and rationality of Mg, and
the power balance constraints of the power grid are shown
in (12) [25].

∑N
i=1 Pi(t) + Pbat(t) + Pgrid(t) = Pl(t)

Pimin(t) ≤ Pi(t) ≤ Pimax(t)
(12)

In (12), Pbat(t) refers to energy storage device power,
Pgrid(t) is the power purchased from the public grid,
and Pl(t) is user load power. This indicates that Pi(t)
needs to be within a certain upper and lower limit to
ensure that the power generation system is feasible. The
ramp rate can represent the performance of the power
generation unit. The ramp rate constraint of each unit in
Mg is shown in (13) [26]. |Pi,up(t)− Pi,up(t− 1)| ≤ Ri,up ·∆t

|Pi,down(t)− Pi,down(t− 1)| ≤ Ri,down ·∆t
(13)

In (13), Pi,up(t) and Pi,down(t) represent Pi(t)increased
and decreased active power. Ri,up and Ri,down indicate
the increase and decrease of the active power limit of
Pi(t), respectively. The line transmission power constraint
between the Mg and distribution network is shown in
(14) [27].

Pline,min(t) ≤ Pline(t) ≤ Pline,max(t) (14)

In (14), Pline,max(t) and Pline,min(t) represent the max-
imum and minimum line transmission power, respectively.
Excessive charging and discharging will reduce the service
life of BAT, so the charging and discharging power are
restricted, as shown in (15) [28].

SSOCmin ≤ SSOC(t) ≤ SSOCmax

PBESSin(t) ≤ PBESSin,max

PBESSout(t) ≤ PBESSout,max

(15)

In (15), SSOC(t) represents the state of BAT charge,
and PBESSin(t) and PBESSout(t) represent charging and
discharging power. The schematic diagram of the Mg
combinatorial optimisation mathematical model is shown
in Fig. 2.

3.3 Construction of Optimisation Problem Model
Using Improved PSO

For objective function solutions, the optimisation algo-
rithm is usually for calculation. Common optimisation
algorithms include the ant colony algorithm, firefly
algorithm, whale algorithm, PSO, etc. The core idea is to
simulate the animal’s behaviour for optimal solution. PSO
simulates birds’ foraging behaviour and realises the optimal
cooperation mode between birds and bird groups to find
food. To improve solution accuracy, SA is used to improve
the PSO. SA algorithm simulates the annealing process
of solid fuel and compares the combinatorial optimisation
problem with the annealing process of solid fuel. The

Figure 2. Schematic diagram of microgrid combination
optimisation mathematical model.

iterative cycle process of the algorithm simulates the state
that the internal energy of solid fuel reaches thermal
equilibrium in the process of solid combustion and cooling.
In the SA algorithm, with solid annealing, if the new
solution offers greater value than the old solution, it will
replace the old solution. However, if the new solution offers
less value than the old solution, a suboptimal solution may
be generated. The probability of outputting a poor solution
is shown in (16) [29].

p = exp(−E(xnew)− E(xold)

kT
) (16)

In (16), k is the Boltzmann constant, T is the
temperature, andE(xnew) andE(xold) are the new solution
and the old solution, respectively. From (16), the higher the
temperature, the higher the probability of the algorithm
selecting the worst solution. Therefore, the algorithm
avoids falling into the local optimal solution. The flowchart
of the SA algorithm is shown in Fig. 3.

To improve the PSO problem, the SA algorithm and
PSO algorithm are combined to construct SAPSO. It uses
the idea of probability jump in SA to realise the jump-out.
In the SAPSO algorithm, the inertia weight parameter
needs to be initialised first, and the calculation is shown in
(17) [30].

ω = ωmax − (ωmax − ωmin)(
k

kmax
)2 (17)

In (17), ω represents the inertia weight, ωmax and
ωmin represent the start value and end value of inertia
weight, which can be set to 0.9 and 0.4 according to
experience. k indicates the number of iterations and kmax

is the max iteration [31], [32]. The fitness value of each
particle is computed by evaluating its solution using a
fitness function. This allows for the identification of both
the optimal solution within each particle and the global
optimal solution within the current population. SA initial
temperature is obtained through the optimal fitness value.
The initial temperature is shown in (18) [33].

T = −f(Ppd)

ln0.2
(18)
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Figure 3. Flowchart of SA algorithm.

Figure 4. Flowchart of SAPSO algorithm.

Figure 5. The difference between the improved SAPSO algorithm and the original one.

In (18), f(Ppd) represents the fitness value of the opti-
mal position. The roulette method can calculate the
fitness value of each global optimal position under the
current temperature. The fitness of the current solution
is compared with the fitness of the global optimal
solution. The global optimal solution is updated if the
current solution achieves a higher fitness. The termination
condition can be determined by either the number of
iterations or the range of variation in solutions [34].
Once the termination condition is met, the global optimal
solution is returned as the result. The flowchart of the
SAPSO algorithm is shown in Fig. 4.

The difference between the improved SAPSO algo-
rithm and the original one is shown in Fig. 5.

From Fig. 5, compared with PSO, SAPSO has added
key links to dynamically adjust the performance of the
current search stage or particles, which helps balance
the ability of global search and local search. Meanwhile,
SAPSO adopts an adaptive neighbourhood topology
structure to improve information flow efficiency and
promote knowledge sharing among different individuals
within the group. SAPSO may allow particles to self-learn
parameter values based on experience, without the need
for algorithm designers to manually adjust them.
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Table 1
Table of Treatment Costs for Relevant Parameters

Power supply type Maximum power value Minimum power value Binding power Fuel cost Operating cost

PV 0 20 - - 0.0096

Wt 0 80 - - 0.0450

MT 0 50 80 0.358 0.0450

FC 0 60 60 0.199 0.0295

WIP -30 30 - 0.147 0.0742

Figure 6. Prediction data of wind power, photovoltaic
output, and user load.

4. Experimental Analysis of Mg Combination
Model

To study SAPSO performance in the Mg combinatorial
optimisation model, this chapter is divided into two parts.
The first part describes the background data and parameter
settings of the selected Mg, and the second part tests and
analyses the model.

4.1 Mg Data and Model Parameter Setting

To verify SAPSO algorithm effectiveness, this study used
MATLAB system. The experiment took one day as a
cycle, and PV and WT operated at maximum power.
The energy storage device had a maximum charging and
discharging power capacity of 10 kW. Furthermore, the
power purchased from the public grid was limited to a
maximum of 40% of the daily load. A city in China
was selected as the experimental object. The electricity
purchase price was 0.165 yuan/kwh and the electricity sale
price was 0.130 yuan/kwh from 23:00 to 07:00. During
the period from 06:00 to 12:00 and from 15:00 to 18:00,
the power purchase price was 0.490 yuan/kwh and the
power sale price was 0.380 yuan/kwh. The electricity
purchase price was 0.830 yuan/kwh and the electricity sale
price was 0.650 yuan/kWh at 12:00–15:00 and 18:00–23:00
in peak hours. By referring to the power consumption
of the place, the predicted data are obtained as shown
in Fig. 6.

In Fig. 6, the wind was small due to sufficient sunlight
in the daytime. Therefore, the PV in this area reached

Table 2
Table of Aggregates of Each Micro Power Supply

Types of
pollutants

Emission
factor

Process
price

MT FC WIP

CO2 1.0782 1.5982 1.4350 26.4550

SO2 0.0035 0.0080 0.4550 6.2350

NOx 0.2000 0.0140 21.8000 0.0880

Figure 7. Iterative optimisation process of operating costs
for four models.

the maximum power at 12:00 noon, and the power of
WT at night was greater than that during the day. The
relevant parameters of each micro power supply is shown
in Table 1.

From Table 1, it can be seen that the maximum
power values of PV, WT, MT, and FC are all 0, and the
maximum power values of WIP are all -30. The minimum
power values are 20, 801, 50, 60, and 30, respectively.
The treatment cost of pollutants in the area is shown
in Table 2.

From Table 2, the fuel cost and the operation cost
for power supply were far less than the treatment cost
of pollutants. Excessive use of fossil fuels reduced the
cost but increase the pollutants, which cannot achieve the
balance between economy and environmental protection.
Therefore, intelligent optimisation algorithm can solve the
objective problem in Mg.
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Figure 8. Average operation time of four models: (a) runtime and (b) cost comparison.

4.2 Model Case Analysis

The Mg system in a domestic city was selected as an
example to analyse the Mg system in this region. The objec-
tive function was set as the Mg minimum operation cost
considering the economy and environmental protection.
Multi-objective particle swarm optimisation (MOPSO),
SSA, PSO algorithm, and SAPSO algorithm were selected
for comparison. MOPSO is specifically designed to solve
multi-objective optimisation problems and can handle
multiple objective functions simultaneously. The SSA
algorithm is a heuristic optimisation algorithm inspired
by the foraging behaviour of sparrows and designed to
solve multi-objective optimisation problems, including the
optimal scheduling problem of Mgs. Therefore, the SSA
algorithm, as a typical heuristic optimisation algorithm,
is particularly suitable for solving such complex problems.
By comparing the performance of these algorithms, their
application effectiveness, advantages, and disadvantages
can be better evaluated in Mg system optimisation. The
epoch of MOPSO, SSA, PSO, and SAPSO models was
set to 300, and the initial particle number was set to 600.
The start and end values of inertia weight were set to 0.9
and 0.4, and the learning factor to 1.0. The operation cost
iterative optimisation process of the four models is shown
in Fig. 7.

In Fig. 7, four models’ operating costs decreased as
iteration times increased. However, the PSO algorithm
fell into the local optimal solution when the number of
iterations was 80, 150, and 225. The SAPSO model tended
to converge at 60 iterations, and the optimal operating cost
was 1,500 RMB. The iteration curves of the SAPSO model
and MOPSO model were very close, but SAPSO tended
to stabilise 10 times earlier than MOPSO. The experiment
was repeated 10 times and the average value of the 10
runs was calculated. The average operation time and cost
of the four models were compared. At the same time, to
compare the four algorithms’ stability in solving the model,
the total cost curve was drawn. The results are shown in
Fig. 8.

Fig. 8(a) and 8(b) represents the time and cost of
10 runs, respectively. The horizontal axis represents the
number of experiments, and the vertical axis represents
time and cost. In Fig. 8, the PSO average operation time
was 1,550 s, that of SSA was 980 s, the average running

time of MOPSO was 682 s, and that of SAPSO was 625
s. At the same time, the curve of the SAPSO algorithm
to solve the cost fluctuated less and was relatively stable.
SAPSO had faster running time and improved the speed of
problem-solving. This meant that in practical applications,
such as Mg optimisation scheduling, the SAPSO algorithm
solved problems more efficiently, quickly obtained the
optimal solution, and better ensured the stability of
the solution. This provided more powerful optimisation
tools for the actual operation and management of Mg
systems. After 10 simulation experiments, the average
cost, standard deviation, minimum value, and median
value calculated by the four algorithms are shown in
Table 3.

In Table 3, the average operating cost obtained by the
SAPSO model was 1,458.52 RMB, the standard deviation
was 75.49 RMB, the minimum cost was 1,355.06 RMB,
and the median was 1,483.27 RMB. Because PSO was easy
to fall into the local optimal solution, the calculated result
was the most unsatisfactory. Compared with the PSO
algorithm, the SSA algorithm was improved, but compared
with the SAPSO algorithm, the SSA algorithm still had
shortcomings. Although MOPSO performed better than
SSA and PSO, its cost was still higher than SAPSO,
indicating that MOPSO was not as cost-effective as
SAPSO. It showed that the SAPSO model was stable, and
the cost solution was optimal. The energy consumption
calculated by SSA, PSO, MOPSO, and SAPSO models was
compared and analysed, as shown in Fig. 9.

The horizontal axis in Fig. 9 represents the number
of iterations, and the vertical axis represents the energy
consumption situation. In Fig. 9, the SAPSO algorithm
tended to converge after 25 iterations. MOPSO tended to
converge after 50 iterations. The SSA algorithm converged
after 95 iterations. The PSO algorithm converged after 148
iterations. Their minimum energy consumption values were
2.575×105 J, 2.605×105 J, 2.655×105 J, and 2.675×105 J.
Therefore, the SAPSO algorithm can solve the minimum
energy consumption value, and can effectively reduce the
emission of pollutants in the Mg operation. The SAPSO
algorithm shows high efficiency and accuracy in finding the
minimum energy consumption value of Mgs. Compared to
the SSA algorithm and PSO algorithm, it requires fewer
iterations for convergence and obtains a lower minimum
energy consumption value. This means that in actual
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Table 3
Cost Results Calculated by Four Algorithms (Unit: RMB)

Algorithm
name

SSA PSO MOPSO SAPSO

Average
value

2, 045.55 2, 320.15 1, 862.31 1, 458.52

Standard
deviation

255.42 350.28 172.04 75.49

Minimum
value

1, 843.26 2, 050.19 1, 620.68 1, 355.06

Median 2, 050.92 2, 370.55 1, 742.31 1, 483.27

Figure 9. Energy consumption iterative optimisation
process of three models.

Figure 10. Distributed power sources output.

Mg operation, using the SAPSO algorithm for energy
management and optimisation can more effectively reduce
energy consumption, reduce environmental pollution, and
improve the sustainable development ability of Mgs. Each
distributed generation output optimised by the SAPSO
model is shown in Fig. 10.

The horizontal axis in Fig. 10 represents time, and
the vertical axis represents the output of distributed power
sources. In the optimal dispatch of Mg, PV, and WT
systems operated at maximum output. As can be seen
from Fig. 9, BAT was in the discharge phase during the
period of 00:00–06:00. At this stage, BAT, WIP, and MT
cooperated to ensure the load demand. During the period
of 08:00–12:00, renewable energy generation was mainly
used to satisfy load, and BAT was in a state of charge.
During the period from 13:00 to 20:00, the power demand

Figure 11. Consumption of new energy.

increased, and BAT discharge increased to meet the needs
of users. During the 20:00–00:00, MT and WIP output
increased, and BAT was in charge state. At low load
demand, renewable energy sources, such as PV and wind
power were mainly relied upon to meet the demand, while
batteries were also used for energy storage. However, during
peak electricity usage, the battery began to discharge
to meet additional demand. This dynamic scheduling
strategy helped balance and maximise the utilisation of
various energy resources in Mg systems, ensuring that
user needs were met at different periods, reducing reliance
on traditional energy, and improving the reliability and
economy of Mgs. The consumption of new energy is shown
in Fig. 11.

In Fig. 11, during the power consumption peak period,
the load was much larger than the power of new energy.
At 12:00, the maximum load occurred, and the new energy
consumption and actual value were 22.4 kW and 20.5 kW,
respectively, indicating a good new energy consumption
effect. The SAPSO algorithm can ensure that the new
energy consumption rate of the Mg system can reach 100%,
to achieve the effect of environmental protection and energy
conservation.

5. Conclusion

To achieve the output balance of the Mg system and
meet the comprehensive benefit demand of the Mg system
dispatching under the new energy consumption. This
research uses PSO and introduces SA and proposes
an improved PSO for new energy consumption. The
experimental results showed that PSO fell into the local
optimal solution briefly when iterations were 80, 150,
and 225. The SAPSO model tended to converge at 60
iterations, and the optimal operating cost was 1,500 yuan.
The average operating cost of the SAPSO model was
1,458.52 RMB, the standard deviation was 75.49 RMB,
the minimum cost was 1,355.06 RMB, and the median
was 1,483.27 RMB. The average running time of PSO
was 1,550 s, the average running time of SSA was 980 s,
the average running time of MOPSO was 682 s, and the
average running time of SAPSO was 625 s. PSO, SSA,
MOPSO, and SAPSO tended to converge after 148, 95, 50,
and 25 iterations, and the minimum energy consumption
values obtained were 2.675×105 J, 2.655×105 J, 2.608×105

J, 2.575×105 J, respectively. The average operation time
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of PSO was 1,550 s, that of SSA was 980 s, that of
MOPSO was 682 s, and that of SAPSO was 625 s. Results
showed good stability of SAPSO, and the cost solution
was the best, which proved that the SAPSO model was
superior to the PSO model in optimisation ability. At
the same time, the SAPSO algorithm can ensure that the
new energy consumption rate of the Mg system can reach
100% to achieve the effect of environmental protection
and energy saving. This study has shortcomings, lack of
optimisation for the model-solving speed, in the next study,
more optimisation algorithms should be used to shorten
the time. Efforts are being made to further optimise Mg
management and new energy consumption. This includes
the development and improvement of PSO algorithms that
can adapt to different Mg scenarios. Research is also being
conducted on the application of energy storage systems,
along with the development of energy trading mechanisms
across Mgs.
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