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CHAIN FAULT IDENTIFICATION

AND POWER GRID PLANNING

OPTIMISATION IN POWER SYSTEMS

CONSIDERING MULTIPLE SCENARIOS
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Abstract

The study proposes a method for chained fault identification in

power systems across various scenarios. It combines fault data

and state search for fault identification, utilises a multi-scenario

multi-objective optimisation method, and applies the fast non-

dominated sorting genetic algorithm (NSGA-II) with elite strategy

for optimal solution finding. This method enables a comprehensive

analysis of chained fault identification and power grid planning

in composite power systems. The simulation results demonstrated

that 15,590 fault chains were obtained, updating the state fault

network 29 times in a total time of 101.68 s. On average, each

update took 0.197 s, while constructing the state fault network took

4,618.10 s. In comparison, the Monte Carlo sampling simulation

completed 50,481 samples in 7,694.79 s, significantly less than

the Monte Carlo simulation. The proposed method displays high

computational efficiency and accuracy in identifying and analysing

power system faults across multiple scenarios, which is crucial for

security management.
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Nomenclature

l represents line. pl represents the current transmission
power of line l. pmax

l represents the transmission power
limit of the line l. n represents the number of components
included in a system. f(k) represents the number of faulty
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components. s0 represents the initial state of the system,
with s0 = 01×n. Nk,s represents the state located in the
k fault stage. Nk,f represents number of faults located in
the k stage. S represents the state value that can measure
the risk of cascading failures of the system in that state. F
represents the fault value that can be used to identify key
components of the system and measure the risk of cascading
failures in the system after the occurrence of the fault.
Nsk(j)

represents the number of occurrences of state sk(j)
recorded in the fault data. fl represents the actual faults
of other components. zi represents the power outage loss
ultimately recorded in the i fault chain. z̆

(
sik
)

represents

the load loss generated at the state sik. Pr
(
sk(j)

)
represents

the probability of convergence to the corresponding
state occurs as the total amount of simulation sampling
increases. sk+1(j′) represents the states. Pr

(
sk+1(j′)

)
represents the probability of the subsequent state sk+1(j′)

when a fault is disconnected during the search process.
sk+1(j′) represents the subsequent status. Sw

(
sk(j)

)
represents the S value of the scenario w corresponding to
the state sk(j). w represents the scene. Nw

sk(j)
represents

the record state sk(j) from the scenario w in the fault
data. Nw

(sk(j),fm)
represents the number of occurrences of

fm from the scenario w in the state sk(j) in the fault data.

l = [l1, l2, . . . , lk]
T

represents the expanded line vector.

u = [u1, u2, . . . , uk]
T

represents the expansion capacity

vector. c = [c1, c2, . . . , ck]
T

represents the expansion unit
price vector. G = {w1, . . . , wg} represents the scenario
after the expansion of the system, also known as the peak
load mode scenario. Cmax represents the upper limit of
the total cost for the system expansion. αk represents the
maximum expansion capacity of the line lk. pcl represents
the rated transmission power of the line l. σ

(
sk(j), f

)
represents the fault losses.

{
f(1), . . . , f(k)

}
represents a

fault chain of length k recorded. Fw
(
sk(j), fm

)
represents

the F value of the scenario w corresponding to the
state sk(j).

(
s0, f(1)

)
,
(
s1, f(2)

)
, . . . ,

(
sk, f(0)

)
represent the

pairing state with the corresponding faults in the fault
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chain to form a sequence of binary tuples. Nc represents
the total number of scenarios. sk(j) represents the k state
located in the j fault stage. (u, l) represents a line expansion
plan. N(sk(j),fl) represents the number of occurrences of

fl in the state sk(j). r
G (u, l) represents the multi-scenario

cascading fault risk calculated based on the composite
state fault network after applying the expansion plan. sk
represents the state of the k lines failure.NM represents the
total simulation sampling amount. Pr0

(
sk(j), fl

)
represents

no probability of failure occurring.

1. Introduction

The power system is an indispensable infrastructure in
modern society, whose function is to transmit electricity
from power stations to users, providing the necessary
power supply for people’s daily lives and various industrial
and commercial activities. To ensure the safe and reliable
operation of the power system, fault identification, and
processing technology in the power system has become
one of the focuses of research [1]. The study focuses
on the uninterrupted operation of the power system
and addresses the impact of scenario and environmental
changes. It analyses chain fault identification in the power
system using fault data and state search [2]. The proposed
method involves a multi-scenario approach to identify
chain faults, combining multi-objective algorithms with
genetic algorithms. Specifically, it utilises the fast and
elitist non-dominated sorting genetic algorithm (NSGA-II)
with elite strategies to find the Pareto-optimal solution
set for fault identification and optimise the grid planning
scheme. This approach is innovative in dealing with
chain fault identification in multi-scenario power systems,
which can improve the compatibility and stability of the
power system and reduce the operational risks due to
environmental changes or scenario switching. It provides
new ideas for power system planning and operation and
helps to improve the operational efficiency and stability
of the power grid. The study is structured as follows:
the first part outlines the purpose of the proposed power
system chain fault identification. The second part provides
background information and explains the significance of
the research on the power system chain fault problem,
including the methodology used. The third part focuses on
the chain fault identification methodology based on fault
data and state search and optimises the multi-scenario fault
identification and power grid planning using NSGA-II. This
section represents the innovation and focus of the research.
The fourth part describes the experimental validation
based on the algorithm designed in the second part, as well
as the measurement and analysis of the experimental data
results. The fifth part concludes the experimental results,
highlights the limitations of the design, and discusses future
research directions for further fault analysis.

2. Related Works

There are also some safety hazards in the operation of the
power system, such as power failures. These faults have had

a significant impact on the normal operation of the power
system. Chain failures can cause major power outages
in the power system, causing serious economic losses to
society. In the study of multi-scenario and multi-objective
power system optimisation, Li et al. proposed a long-term
multi-region power system planning model that described
the fluctuations of renewable electricity. Scenario analysis
was used to address the policy uncertainty of carbon tax
and electricity substitution. The results indicated that the
model was effective for power system planning [3]. Mart́ınez
and Cruz-Mendoza analysed the power energy system
to achieve gradual decarbonisation and integrate more
intermittent renewable energy sources. They introduced a
novel and flexible modeling method for power planning
tools, which combined linear programming optimisation
with computational strategies. This method enabled the
efficient optimization of a wide range of economic and
technical parameters in complex interconnected power
systems, including reading, processing, and writing large
amounts of data. The time consumption was optimised
through binary matrices, and the results showed that it
achieved energy recycling and efficiency [4]. Considering
the prediction uncertainty of distributed generation and
multi-energy loads, Mei et al. proposed a stochastic optimal
operation model based on multi-scenario simulation. Based
on Latin hypercube sampling for operation scenario
generation, a stochastic optimal operation model with
the overall operating economy as the decision-making
objective was proposed based on typical operation
scenarios. The effectiveness and rationality of the model
were verified through case analysis [5]. Mitiche et al.
analysed electromagnetic interference (EMI) frequency
scans to detect frequencies associated with these faults.
These time-resolved signals of key frequencies provided
important information for fault type identification and
trend analysis. They developed an end-to-end fault clas-
sification method based on real-world EMI time-resolved
signals. The results demonstrated the high classification
performance of its computationally efficient inference
model [6].

For fault identification and algorithm research,
traditional protection devices cannot detect faults. Chan-
drasekharan et al. proposed a new fault detection algorithm
to identify faults in photovoltaic arrays and strings.
The effectiveness of this algorithm was verified through
MATLAB simulation and experiments under various
operating conditions of solar photovoltaic power plants [7].
Shi et al. developed a deep neural network (DNN)
based method for identifying and classifying power system
events by utilising real-world measurements of hundreds of
phasor measurement units (PMUs) and labels of thousands
of events. They proposed a PMU sorting algorithm
based on graph signal processing, and then deployed
regularisation based on information loading. The results
indicated that the combination of PMU-based sorting and
information loading-based regularisation techniques helped
the proposed DNN method achieve high-precision event
recognition and classification results [8]. To further improve
the fault identification ability of protection and adaptive
reclosure, Hou et al. proposed a hybrid multi-terminal
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high-voltage DC system fault identification scheme based
on control and protection coordination strategies. In the
adaptive reclosing stage, an active fault identification
scheme based on the distribution of injected signal
amplitude along the line was proposed. Simulation studies
showed that this fault identification scheme identified fault
areas in various fault scenarios [9]. Liang et al. used an
improved metaheuristic technique called the developed
African vulture optimisation algorithm to provide optimal
results for cold, hot, and electric joint systems. The
results indicated that, without considering the system,
the total cost of purchasing electricity was equal to
420,959 per year, and the cost function value was positive,
indicating that the system had a positive effect in reducing
system costs [10]. Verrax et al. proposed a parameter
single-ended fault identification algorithm. It used a
short observation window to determine if there was a
fault in the circuit monitored by the relay. Combining
phenomenological and behavioural aspects to represent
fault propagation, considering ground effects and various
losses, the fault line was identified based on the size of the
estimated confidence region obtained. The performance of
this algorithm in a three-node grid was simulated and
studied [11].

This study utilised an improved metaheuristic tech-
nique, the African vulture optimisation algorithm, which
provides a new optimisation tool for similar studies.
Although this study has achieved positive results, its
scenario setting may be too simplistic, and practical
applications require consideration of more factors and
conditions. This provides direction for future research. Gao
et al. proposed a new optimised hybrid renewable energy
system (HRES) layout for power supply in remote areas
of Türkiye. The final simulation showed that the proposed
method provided lower NPC and LCOE compared to
other methods [12]. This study not only focuses on system
cost and reliability but also considers the impact of
supply loss probability on system performance, making
the optimisation results more accurate and dependable. To
solve the problem of price uncertainty in the electricity
market, Cai et al. proposed a new mathematical model
using a mixed robust stochastic method, aiming to
maximise the expected profit of compressed air energy
systems. The research results indicated that considering
the maximum capacity of cave explorers with uncertainty,
under the robustness strategy, the total profit was
reduced by approximately 8.68% [13]. This emphasises the
importance of considering the uncertainty of the electricity
market and provides an effective mathematical model to
handle this uncertainty, thereby improving the efficiency
and stability of the power system.

In summary, scholars have conducted many algorith-
mic studies on fault analysis and identification positioning,
but the research on multi-scenario, multi-objective, and
power grid planning is not yet in-depth enough. Mei et al.
proposed a stochastic optimal operation model based on
multi-scenario simulation, but the model did not include
power grid planning. Mitiche et al. analysed EMI frequency
scans to detect frequencies associated with these faults.
Chandrasekharan et al. proposed a new fault detection

algorithm to identify faults in photovoltaic arrays and
strings, but no further optimal grid planning was carried
out. Mart́ınez and Cruz-Mendoza used a linear program-
ming optimisation method combined with computational
strategies to optimise reading and processing calculations,
but the algorithm was cumbersome, and the results needed
further conversion. Based on the above research, this study
proposes a multi-scenario power system cascading fault
identification and power grid planning optimisation scheme
based on fault data and state search, which improves the
compatibility and adaptability of the power system in
different scenarios and maintains the optimal operation
state of its line system.

3. Network Method and Power Grid Optimisation
Design Based on Multi-Scenario Composite
State Faults

With the development of the economy, to meet more power
supply needs, it is necessary to expand the power system.
However, there are cascading faults and safety issues during
the operation of the power grid. Therefore, research is
conducted on identifying faults based on the data generated
during faults and corresponding states, and multi-objective
algorithms are combined to achieve power system fault
identification and analysis in multiple scenarios. Therefore,
a power system cascading fault identification and power
grid optimisation design considering multiple scenarios are
proposed.

3.1 Chain Faults Identification and Analysis
in Power Systems Based on Fault Data
and State Search

Chain faults can trigger major power system outages,
causing serious economic losses to society. The occurrence
and propagation of cascading faults in the power system
are closely related to the faults of some components in
the system. These components are key components of the
system and have higher criticality than other components.
Once a key component in the power system malfunctions,
it will trigger a chain reaction, leading to severe power
outages [14]. Therefore, identifying and reinforcing these
critical components is crucial as a feasible solution to
prevent chain failures and curb their spread. Identifying
critical faults and components related to them requires
relying on chain fault simulation calculations. Power
system cascading failure refers to the occurrence of new
events in the power grid in a cascading manner and
then further leading to the emergence of new events in
a cascading manner. The chain and correlation between
events are typical characteristics of such events. One of
the characteristics of the accident chain is that “the more
accident chain conditions are met, the easier accidents
are to occur.” Chain failures conform to the basic idea
of the above accident chain theory, and the accident
chain is an effective tool for characterising chain failures.
A method for constructing a state fault network based
on fault data is proposed to handle the large amount
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Figure 1. Simulation steps for cascading fault model.

of fault chain data generated during cascading fault
simulation, which records the propagation information of
such faults [15]. In many simulation models currently
developed, transmission line faults have been proven to
be the main driving force for propagation, although these
faults involve complex processes and factors. Therefore,
the focus of the research is to design a simulation model
based on DC for generating cascading fault chains. The
simulation steps of the cascading fault model are shown in
Fig. 1.

The initial operating point of the system is entered,
the initial event that triggers the cascading fault is set, and
then the fault is identified to balance the power generation
load within the fault. The system power flow is calculated to
determine if it exceeds the rated capacity. If it exceeds the
rated capacity, the fault probability is calculated according
to (1) and it is included in the fault chain. If it does not
exceed the rated capacity, the interlocking process will end.
The fault chain is recorded, and the total loss of the fault
chain is calculated [16].

Prtripl =


1, pl ≥ pmax

l

pl−pc
l

pmax
l −pc

l
, pcl < pl < pmax

l

0, pl ≤ pcl

(1)

In (1), pl represents the current transmission power of
the line l, pcl represents the rated transmission power of the
line l, and pmax

l represents the transmission power limit of
the line l. The data in the fault chain are reconstructed
and analysed, with a system consisting of n components.{
f(1), . . . , f(k)

}
represents the recorded fault chain with

a length of k, and f(k) represents the number of the
faulty component. Using a vector with dimension 1 × n
to represent the current operating state of the system, 0
represents the component in operation, and 1 represents
the component out of service [17]. If the initial state of
the system is denoted as s0, then there is s0 = 01×n, and
k + 1 system states are obtained from this fault chain,

denoted as {s0, s1, . . . , sk}. Then, pair the state with the
corresponding faults in the fault chain to form a binary
sequence, denoted as

(
s0, f(1)

)
,
(
s1, f(2)

)
, . . . ,

(
sk, f(0)

)
.

After pairing faults and states, a binary can specifically
indicate the location of the faulty component. Figure 2
shows the fault chain information recorded by a system
containing six lines.

Nk,s and Nk,f are the states located in the k fault stage
and the number of faults, respectively, sk(j) represents the
j state located in the k fault stage. From this, a binary is
obtained, which is the part represented in blue in Fig. 2. By
processing fault chain data, the network structure of state
faults is obtained [18]. Next, the state and fault values are
calculated, denoted as S and F , respectively.

For S values, sk(j) is set and the possible faults fl are
known, and their S values are calculated as shown in (2).

S
(
sk(j)

)
=

∑
fl∈Ssk(j)

N
(sk(j),fl)
Nsk(j)

F
(
sk(j), fl

)
Nsk(j)

=
∑

fl∈Ssk(j)

N(sk(j),fl)

(2)

In (2), N(sk(j),fl) represents the number of fl

occurrences of the sk(j) state and Nsk(j)
represents the

number of occurrences of the sk(j) state recorded in the
fault data. For the calculation of F values, since the loss
data of cascading faults is introduced into the state fault
network by f0, the F value of f0 is equal to the final loss
of the recorded fault chain. For the actual faults of other
components, the value is equal to the value of the state it
points to, as shown in (3). F

(
sk(j), f0

)
= L, f0 ∈ Ssk(j)

F
(
sk(j), fl

)
= S

(
sk+1(i)

)
, fl ∈ Ssk(j)

, fl ∈ Spf
sk+1(j)

(3)

In (3), fl represents the actual fault of other
components. The load loss of all fault chains in this system,
such as the F value of terminal state, is shown in Fig. 3.
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Figure 2. Fault chain information recorded by the system for six lines.

Figure 3. The load loss of all fault chains in this system, such as the value of terminal state.

The S value can measure the risk of cascading failures
of the system in that state. Therefore, different F values
in the state fault network can be used to identify key
components of the system. The S value of a state quantifies
the risk of cascading faults in the system in that state,
while the F value of a fault indicates the risk of cascading
faults in the system after the occurrence of that fault [19].
Figure 4 shows the process of identifying critical faults in
a state fault network.

In Fig. 4, the green part represents the initial fault,
while the blue circle represents a situation that only
contains one possible fault. In the second stage, the blue
arrow indicates that faults with a state fault network F
value that is not higher than the state S value need to
be eliminated, while the black arrow indicates faults with
a F value higher than the state S value that need to
be retained. The key faults identified in the third stage
are recorded as

(
a, fa(2)

)
,
(
b, fb(1)

)
,
(
b, fb(3)

)
,
(
c, fc(2)

)
. In

the risk calculation of chain failures, over 70% of system
interference and fault prevention are related to hidden

failures. The occurrence of hidden faults is affected by
exposure, and further research defines the state as a
sequence of fault lines with cascading faults [20], as shown
in (4).

sk =
[
f(1), f(2), . . . , f(k)

]
(4)

In (4), sk represents the state of k faulty line. To
avoid the influence of sampling randomness, the system’s
cascading fault risk calculation is adopted in the improved
state fault network [21]. Equation (5) calculates the sum
of losses generated by various stages of the state.

zi = z̆
(
si1
)

+ z̆
(
si2
)

+ ..+ z̆
(
sik
)

(5)

In (5), zi represents the final recorded power outage
loss of the i fault chain, z̆

(
sik
)

is the load loss generated at
the state sik. Substituting (5) into (4) yields (6).

r =
1

NM

NM∑
i=1

(
z
(
si1
)

+ z
(
si2
)

+ · · ·+ z
(
sik
))

(6)
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Figure 4. Key fault identification steps in state fault networks.

The accurate assessment of the risk of cascading faults
can be represented by the sum of the risks of all states in
the state fault network, as shown in (7).

r =

Ns
1∑

j=1

Pr
(
s1(j)

)
z̆
(
s1(j)

)
+

Ns
2∑

j=1

Pr
(
s2(j)

)
z̆
(
s2(j)

)
+ · · ·

+

Ns
k∑

j=1

Pr
(
sk(j)

)
z̆
(
sk(j)

)
+ · · · (7)

In (7), Pr
(
sk(j)

)
represents the probability of

convergence to the corresponding state as the total number
of simulation samples NM increases. It is necessary to
evaluate the consequences of various possible faults in
advance to guide the direction of state search and introduce
risk assessment indicators. The research mainly considers
calculating two factors: fault probability and fault loss.
The probability of a possible fault occurring on a certain
line in a certain state can be directly obtained through
implicit fault probability and overload fault probability, as
shown in (8).

Pr
(
sk(j), fl

)
= PrH

(
sk(j), fl

)
+ PrF

(
sk(j), fl

)PrH
(
sk(j), fl

)
= pHW

l

PrF
(
sk(j), fl

)
= pHW

0 pFWl

Pr0
(
sk(j), fl

)
= pHW

0 pFW0

Pr
(
sk+1(j′)

)
= Pr

(
sk(j)

)
Pr
(
sk(j), fl

)
(8)

In (8), l represents the line, sk(j) represents the

state, Pr0
(
sk(j), fl

)
represents the probability of no fault

occurring, and Pr
(
sk+1(j′)

)
represents the probability of

its subsequent state sk+1(j′) when the fault is disconnected
during the search process. Regarding the calculation of
fault losses, the research evaluates the impact of faults
through system splitting losses and line overload losses.
Based on the two factors of fault probability and fault loss
mentioned above, the fault risk assessment indicators for
the line are shown in (9).

ρ
(
sk(j), fl

)
= Pr

(
sk(j), fl

)
σ
(
sk(j), fl

)
(9)

In (9), σ
(
sk(j), f

)
represents the fault loss. After

simulation calculation, the information is stored in the
state fault network. Record faults in the same state and
directly re read them when encountering them again to
avoid repeated consumption. The entire search process is
shown in Fig. 5.

3.2 Composite State Fault Analysis and Power
Grid Planning Optimisation Considering
Multiple Scenarios

The operating status of the power system is not fixed and
will include different operating scenarios with significant
differences throughout the year. Therefore, the analysis
method for a single scenario is not sufficient to meet the
needs of actual power grid operation analysis. Meanwhile,
chain failures may also develop in different scenarios
through different propagation paths. Therefore, multi-
scenario analysis for risk control of chain failures is
of great significance. The previous section discussed in
depth the analysis methods based on fault data, but
the current analysis methods based on fault data are
not suitable for multi-scenario analysis. The method
developed by this research institute is called the state
fault network, which can detect critical power lines in
a single operating scenario and integrate and analyse
fault data generated by various operating modes [22].
However, its design cannot distinguish between multiple
scenarios. Although specific scenario analysis can be
conducted through separate calculations and evaluations
to draw comprehensive conclusions, there are no specific
connections or significant differences between different
scenarios. Therefore, a composite state fault network
method considering multi-scenario and multi-objective
optimisation has been proposed. The improved state fault
network method can balance the analysis needs of multiple
scenarios while utilising the computational efficiency of the
composite state fault network method to quickly calculate
multi-scenario multi-objective optimisation problems in
power systems. The power system operates throughout the
year, and the maintenance plan significantly changes its
operating mode. There are significant differences in the
probability of faults and power outages of system lines
under different operating modes. To process fault data and
generate a state fault network, it is necessary to distinguish
the source of fault data.

The number of times the sk(j) state has occurred and
the number of possible faults are recorded, and the F
values of possible faults and their own S values in the
record are calculated. In multiple scenarios, fault chain
data are recorded into states and then the source of the
current scenario is distinguished. The schematic diagram
of the composite state fault network is shown in Fig. 6.

The improved state fault network consists of multiple
scenarios, sk(j) is set as one of the composite states,
and the S values are calculated in the scenario as shown
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Figure 5. Flowchart of state fault network search.

Figure 6. Schematic diagram of composite state fault network.

in (10).

Sw
(
sk(j)

)
=

∑
fm∈Sw

sk(j)

Nw

(sk(j),fm)

Nw
sk(j)

Fw
(
sk(j), fm

)
(10)

In (10), Sw
(
sk(j)

)
represents the S value of the w

scenario corresponding to the sk(j) state, Fw
(
sk(j), fm

)
represents the value of the F fault in the w scenario
corresponding to the sk(j) state, Nw

sk(j)
and Nw

(sk(j),fm)
represent the number of sk(j) occurrences of the states sk(j)
and fm recorded in the fault data from the w scenario. If
the fault chain in the w scenario ends in sk(j) state, the F
value of f0 is recorded in the w scenario.

In terms of composite state fault networks, the
calculation and analysis at the overall level need to pay
attention to the statistics of all scenario information. Under
the requirements of distinguishing storage and calculation,

the composite S values and composite F values of each
state and fault can be calculated at the overall level.
Assuming that the S values of the sk(j) state are known in
each scenario, the load S value and composite F value of
the sk(j) state are calculated as shown in (11).

S
(
sk(j)

)
=

Nc∑
w=1

Nw
sk(j)

Sw(sk(j))
Nc∑

w=1
Nw

sk(j)

Nsk(j)
=

Nc∑
w=1

Nw
sk(j)

F
(
sk(j), fm

)
=

Nc∑
w=1

Nw

(sk(j),fm)
Fw(sk(j),fm)

Nc∑
w=1

Nw

(sk(j),fm)

(11)

In (11), Nc represents the total number of scenarios
considered. The total number of state occurrences in
a composite state fault network and the number of
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Figure 7. NSGA-II algorithm basic thinking flowchart.

occurrences in different scenarios satisfy (11). The
relationship between composite F values and composite S
values is shown in (12).

S
(
sk(j)

)
=

∑
fm∈

⋃Nc
w=1 Sw

k(j)

Nc∑
w=1

Nw

(sk(j),fm)

Nc∑
w=1

Nw
sk(j)

F
(
sk(j), fm

)
(12)

Compared to a single scenario running mode, multi-
scenario optimisation problems typically require consider-
ation of the optimisation objectives of each scenario. In
the optimisation problem of multi-scenario line expansion,
the objective function at least includes the expansion
construction cost and the overall risk of chain failures
throughout the year. As the number of scenarios increases,
it is also necessary to consider controlling the risk of
chain failures in peak load scenarios throughout the
year. In multi-objective problems with multiple scenarios,
optimising one objective may result in the loss of other
objectives as a cost [23]. Therefore, the concept of Pareto
optimal solution is introduced in the study. The Pareto
frontier includes the combination of different optimisation
objectives, which can meet the different preferences for each
optimisation objective. In addition, the NSGA-II algorithm
is used to solve the Pareto optimal set. NSGA-II introduces
fast-dominated sorting, crowding degree, and elite strategy
to determine operators, reducing algorithm complexity,

and making the Pareto optimal solution uniformly extend
to the entire Pareto frontier. The basic idea flowchart of
the NSGA-II algorithm is shown in Fig. 7.

Consider improving the state fault into a multi-
scenario composite state fault network, achieving multi-
scenario multi-objective optimisation of the composite
state fault network, for rapid assessment of cascading fault
risk in multi-scenario scenarios. The expansion line is det
as l1, l2, . . . , lk, the expansion capacity is u1, u2, . . . , uk,
denoted as l = [l1, l2, . . . , lk]

T
, u = [u1, u2, . . . , uk]

T
.

(u, l) represents a line expansion plan. Assuming that the
line expansion cost of the system is positively correlated
with the expansion capacity, the expansion cost is set
to c1, c2, . . . , ck, and the expansion unit price vector is
c = [c1, c2, . . . , ck]

T
. The economic cost function of the

expansion plan is shown in (13).

C (u, l) = cTu (13)

After expanding the system according to the plan, the
scenario G = {w1, . . . , wg} is set as the scenario of peak
load mode. Based on the composite state fault network,
the annual change in chain fault risk, i.e., the degree of risk
reduction, and the corresponding scenario of chain fault
risk reduction, are calculated, as shown in (14).R (u, l) = r(u,l)

r(0,l)

RG (u, l) = rG(u,l)
rG(0,l)

(14)
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In (14), rG (u, l) represents the multi-scenario cascad-
ing fault risk calculated based on the composite state fault
network after applying the expansion plan. In summary,
the optimisation problem modelling with (13) and (14) as
objective functions are shown in (15).

min
(
C (u, l) , R (u, l) , RG (u, l)

)
s.t. 0 ≤ uk ≤ αk

C (u, l) < Cmax (15)

In (15), Cmax is the upper limit of the total system
expansion cost, αk represents the maximum expansion
capacity of the line lk. The current multi-scenario modelling
technique suffers from slow efficiency, so the study uses a
simulated annealing algorithm with better robustness to
optimise it in the following steps. First, the power system
failure parameters are initialised, i.e., expansion cost and
expansion capacity, and then the step factor for controlling
the generation of new solutions is searched. The difference
in the objective function between the new solution and the
current solution is calculated, and the Metropolis criterion
is used, i.e., worse new solutions are accepted according to
a certain probability to increase the search space. When
the termination condition is reached, the algorithm ends,
and the optimal solution is returned.

4. Network Method Simulation Experiment for
Fault Analysis of Multi-Scenario Power Systems

To achieve cascading fault analysis and power grid planning
in multiple scenarios, a fault identification method based
on fault data and state search was studied and analysed.
The multi-objective algorithm NSGA-II was combined to
solve the Pareto optimal set and achieve fault identification
and analysis. A simulation experiment was designed for
verification.

4.1 Experimental Data and Design

The experimental dataset was sourced from the annual
operating condition records of a power system with 18,234
fault chain data volume, which contained 48 branch circuits
with a load of 6,274.53 MW. The system loss was measured
by the total outage load volume and was numerically
divided by the total system load volume to normalise it.
The initial faults were random N-2 faults. The co-channel
interference (CCI) was updated every 500 fault chains,
and the change in CCI was detected as shown in Fig. 8.
The dashed line represented the convergence threshold ε.
Convergence threshold was taken 0.0005, CCI reached the
convergence condition when there were 15,590 fault chain
data, so the state fault network generated by 15,590 fault
chains was used to calculate CCI.

When the system was running, MATLAB was used
to write a testing program, and all loads of the operating
parameters were increased by 1.5 times. For the results
of critical line identification, the effectiveness of critical
line identification was verified by expanding the critical
lines, counting the risk of the system after expansion,
and comparing the level of risk reduction. All lines were

Figure 8. CCI variation chart of IEEE node system.

Table 1
The Five Most Critical Paths Identified by EB, CFG, and

State Fault Network Methods

Serial number EB CFG State fault
network

1 25 (13-14) 29 (17-27) 3 (6-7)

2 29 (15-16) 20 (12-32) 44 (26-27)

3 3 (6-7) 37 (15-34) 34 (13-24)

4 29 (16-19) 49 (25-31) 13 (12-25)

5 31 (25-26) 5 (5-14) 8 (9-15)

arranged in descending order of CCI, and three groups of
lines were selected, each group contained five lines, and
three groups of lines were listed. The three groups of lines
with a significant gap in CCI in magnitude were selected,
and a CCI of 0 indicated that there may have been no
failures in these lines, or the failures that occurred were not
critical failures. So, three groups of lines were selected in
the system for chain fault simulation after expansion, and
the risk of chain faults was counted and compared with the
risk profile of the original system. The initial fault event
was a random N-0 fault. To verify the effectiveness of the
state fault network method, its recognition results were
compared with the extended betweenness (EB) method
and the cascading failure graph (CFG) method. The five
most critical paths identified by EB, CFG, and state fault
network methods are shown in Table 1.

To explore scenarios with multiple scenarios, the
research design considered four load levels based on four
seasons: spring, summer peak, autumn, and winter peak.
Four basic scenarios were set throughout the year, with a
proportion of 0.25, and each scenario had an equal duration
throughout the year.

The power system under study contained 5,000
nodes and 20,000 lines spread over several regions and
countries. The nodes included power plants, substations,
transmission lines, and distribution systems. The system
involved multiple types of equipment, such as gas turbines,
hydroelectric power, nuclear power generation, etc. It
also included multiple modes of operation, such as
normal operation, emergency standby, and maintenance.
The experiments were designed with multiple complex
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Figure 9. Comparison of different methods for identifying the risk of chain failures after key line expansion in IEEE39 node
system.

fault scenarios, including multiple faults, interlocking
faults, and faults in interruption mode. For example,
simultaneous multiphase short circuits, a series of chain
reactions triggered by internal transformer faults, etc.
The robustness of the study, i.e., stability and reliability
under different environments and conditions, was also
evaluated.

4.2 Measurement and Analysis of Experimental
Results

Figure 9 shows a comparison of the risk of cascading faults
after identifying key line expansion using different methods.
There were significant differences in the most critical lines
identified by the three methods. After expanding the lines
identified by the state fault network method, the risk
of cascading faults in the system decreased from 448.15
MW to 163.12 MW, the EB method decreased to 246.31
MW, and the CFG method decreased to 388.47 MW.
The method proposed by the expansion research institute
effectively reduced the risk of chain failures by identifying
key routes. In this experimental phase, 15,590 fault chains
were simulated and the state fault network was updated 29
times, taking a total of 101.68 s. The simulation took 95.94
s, which was 94.35% of the total time. The update status
of the faulty network took 5.74 s, with an average update
time of 0.197 s. The visible state fault network method had
high computational efficiency.

In Fig. 9, a faulty circuit was selected for the
experiment to compare the risk of using the state
fault network and Monte Carlo simulation. Figure 10(a)
shows that the risk calculated by Monte Carlo sampling
simulation ultimately converges to the risk value of
207.14 MW calculated by the state fault network. The
construction of a state fault network took 4,618.10 s, while
the Monte Carlo sampling simulation took 7,694.79 s under
the same conditions, indicating that the calculation time
for searching and constructing a state fault network was
better. As the research focused more on searching for
increasingly complete hidden fault events, the statistical

data of the changes in the number of hidden faults in the
new sampling of the two methods are shown in Fig. 10(b).
Figure 10(b) shows the statistical changes in the number
of hidden faults newly sampled by two methods. The
number of new hidden faults collected by Monte Carlo
sampling simulation was only 4.7% of the search state
fault network method. Therefore, the search state fault
network method proposed in the study performed good
at capturing as complete a set of hidden fault events as
possible.

In multiple scenarios, key routes were selected for route
expansion in the experiment, and the routes ranked lower
throughout the year were expanded. The distribution of
the solutions showed that as the cost of line expansion
increased, the overall chain failure risk for the whole year
and the chain failure risk for the winter peak scenario
tended to decrease. In Fig. 11(a), a black dot represents
a nondominated solution. Since the Pareto front hardly
changed after iterative optimisation up to 40 generations,
the nondominated solutions of the 45th to 50th generations
were superimposed on the graph and fitted to obtain the
surface for the sake of accurate surface fitting. Figure 11(a)
shows the optimal solution set for multi-scenario multi-
objective optimisation, where the total capacity of the line
expansion gradually decreased to 600 megawatts, resulting
in a reduction in the Pareto front. The overall risk of
chain failures throughout the year gradually decreased to
66% as the total cost of line expansion increased, while
chain failures during winter peak hours decreased to 72%.
To make it more convenient to view, the experiment
rotates Fig. 11(a) into an elevation view as a plot of the
relationship between the overall annual risk and the winter
peak risk, as shown in Fig. 11(b). Figure 11(b) shows
the relationship between overall risk throughout the year
and winter peak risk. There was a negative correlation
between overall risk throughout the year and winter peak
scenario risk under fixed expansion costs. This suggested
that system planners needed to strike a suitable balance
between the two when considering expansion scenarios if
they did not have a particular risk appetite.
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Figure 10. Risk comparison of state fault networks and Monte Carlo simulation: (a) comparison of cascading fault risks in
IEEE118 node systems and (b) the relationship between the cumulative number of newly collected hidden faults and the
number of searches.

Figure 11. Cost of line expansion for key lines, overall risk throughout the year, and risk situation during winter peak
scenarios: (a) IEEE39 node multi scene multi objective optimisation optimal solution set and (b) plane projection of the
optimal solution set for IEEE39 node multi scene multi objective optimisation.

Table 2 shows the selected sets of optimal solutions and
their degree of risk reduction in the multi-scenario multi-
objective optimisation optimal solution set. In Table 2,
except for line 8, which has almost the same expansion
capacity, and lines 36 and 42, which do not have much
difference in expansion capacity, lines 40 and 95 have a very
significant change in contrast. For line 8, after the total
expansion capacity exceeded 35 MW, the line reached the
limit of expansion utility. For lines 36 and 42, they were
not significantly allocated expansion capacity as they were
less critical than lines 40 and 95 under scenarios 1 and 3,
respectively. Regarding the critical line 40 under Scenario
1, the sequence of points A, B, and C indicated that as
the expansion capacity of line 40 increased within the total
expansion capacity, the risk decreased for Scenario 1 and
increased for Scenario 3. The opposite was true for the more
critical Line 95 under Scenario 3. Lines 40 and 42 had lower
criticality, therefore the allocated expansion capacity was
minimal. In the degree of risk reduction in each scenario,
the calculation results of the composite state fault network

were similar to those of Monte Carlo sampling. In terms of
computational efficiency, it took about 15 s for a state fault
network to calculate the risk of cascading faults, but if
NSGA-II relied on Monte Carlo simulation for calculation,
it increased the time consumption by about 110 times.
From this, the accuracy of the state fault network was
similar to that of the Monte Carlo method, but it had
faster computational efficiency.

To verify the stability of the algorithm in different
scenarios, an interrupt mode, namely, Scenario 4, was
added to statistically analyse the algorithm’s detection and
recognition rate, as shown in Fig. 12. In interrupt mode,
although the recognition rate of the algorithm decreased,
it was still around 91%, while in other scenarios, the
detection recognition rate of the algorithm remained stable
at around 96%.

The study compared the accuracy and error values of
the current multi-scenario power system cascading fault
identification algorithm with particle swarm optimisation
(PSO) and differential evolution algorithm (DE), as shown
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Table 2
Several Sets of Optimal Solutions Selected in the Multi-Scenario Multi-Objective Optimisation Optimal Solution Set and

Their Degree of Risk Reduction

/ A B C

Whole State fault network 65.24% 61.54% 59.14%

Monte Carlo sampling 65.44% 62.48% 57.94%

Scenario 1 State fault network 75.84% 72.18% 68.25%

Monte Carlo sampling 74.25% 73.16% 67.11%

Scenario 2 State fault network 61.78% 58.34% 55.84%

Monte Carlo sampling 59.48% 59.17% 54.28%

Scenario 3 State fault network 44.18% 50.46% 57.49%

Monte Carlo sampling 45.94% 49.12% 55.87%

Line 8 38.54 37.99 37.48

40 7.94 28.48 51

36 1.15 4.25 3.28

42 3.48 2.34 2.77

95 52 21.05 0

Expansion capacity 94.57 92.48 92.34

Figure 12. Comparison of fault recognition data detection
rates in different scenarios.

in Fig. 13. The accuracy of the research algorithm was
always higher than PSO and DE, and the error was also
lower than the other two evolutionary algorithms, with the
best values of 0.958 and 0.013, respectively.

To thoroughly evaluate the algorithm performance
during the interruption and in cross scenarios, a study was
conducted on 12 different types of power lines in different
parts of the power system. After the partial interruption of
the circuit system where the lines were located, fault iden-
tification algorithms were implemented. The first six types
were the lines in Scenario 1, and the last six types were the
lines in Scenario 2. The search for fault time and power

system recovery time is shown in Fig. 14. Fault recognition
algorithms in different scenarios can quickly find and
accurately restore the operation of the power system.

The study introduced a state fault network method
that utilises fault data to improve the accuracy of fault
network analysis. By enhancing the state fault network
with additional system state parameters, the method was
applied to assess the operational risk of the power system.
This approach enabled the calculation of the chain fault
risk assessment by establishing an analytical relationship
between the power system parameters and the state fault
network parameters. A composite state fault network
method considering multiple scenarios was proposed, which
utilised the sampling technology to adaptively adjust the
sampling weights according to the characteristics of the
scenario-sampled fault chain to improve the generation
efficiency of the composite state fault network. At the same
time, multiple objectives, such as economic indicators and
safety indicators for multi-scenario risks were considered
and solved using fast computation of composite state
fault networks. The control results of the resulting
Pareto-optimal solution set for different scenarios were
analysed experimentally to provide more flexible choices
for operation planners, while the comparison of the
computational results with the corresponding Monte Carlo
sampling simulation results verified the accuracy of the
proposed method. The research is of realistic and practical
significance for improving the security, stability, and econ-
omy of the power system and providing dedicated support
for the safe and stable operation of the power system.

To successfully implement a big data and multi-
objective optimisation-based approach to power system
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Figure 13. Comparison of precision and error of different evolutionary algorithms: (a) accuracy comparison and (b) error
comparison.

Figure 14. Research on fault identification algorithms for fault identification and power system recovery time in different
scenarios: (a) finding fault time and (b) power system recovery time.

fault analysis, organisations need to carefully consider and
address aspects, such as data requirements, computational
scalability, and practical application barriers. For data
quality and integrity, fault data needs to be of high quality
and complete for accurate fault identification and analysis.
Moreover, as the scale and complexity of the power system
increases, the amount of fault data grows dramatically,
requiring efficient data processing and storage technologies
to cope with large-scale data processing. In terms of
computational scalability, large-scale parallel computing
requires powerful hardware resources, including high-
performance CPUs, GPUs, and storage devices. For
practical implementation barriers to institutional adoption,
people with appropriate big data and power system
expertise and skills are needed in organisations to ensure
that the approach is implemented and applied correctly.
This may require additional training and recruitment.
It should be ensured that all data processing and
analysing activities comply with the relevant regulatory
and policy requirements, especially regarding data privacy
and security.

5. Conclusion

The power system is an essential infrastructure that plays
a key role in people’s daily lives and socio-economic
development. However, with the operation of the power
system, there are significant differences in the application
and maintenance of multiple scenarios across different
periods and environments. The purpose of this study is to

improve the multi-scenario compatibility of power system
fault analysis by analysing and identifying cascading faults.
A composite state fault network method considering multi-
scenario and multi-objective optimisation is proposed to
solve the Pareto optimal set. Through the application of
these methods, the operational risk and cascading fault
risk of the system can be more accurately evaluated,
resource allocation can be optimised, and the operational
efficiency and safety of the power system can be improved.
The experiment showed that constructing a state fault
network took 4,642.09 s while completing equal sampling
in the Monte Carlo sampling simulation took 7,622.80 s. In
terms of computational efficiency, relying on a composite
state fault network to calculate the risk of cascading
faults for NSGA-II took about 15 s. The accuracy of
the visible state fault network was similar to that of the
Monte Carlo method, but it had faster computational
efficiency. As the total cost of line expansion increased,
the overall risk of chain failures throughout the year
gradually decreased to about 66% before the expansion,
while the winter peak decreased to 72%. The proposed
method is effective in terms of computational efficiency and
risk reduction in multiple scenarios. Although the studied
fault identification algorithm for faults needs to rely on
historical fault data, the study’s optimisation for multiple
scenarios improves the compatibility and applicability
of fault analysis in different scenarios. although the
operating state of the power system may be affected
by a variety of factors, resulting in uncertainty in the
occurrence of faults. The NSGA-II algorithm’s ability to
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solve the Pareto optimal set provides a means to balance
the conflict between different objectives and optimise
multi-objective optimisation problems. Additionally, fault
identification through state search is an innovative
approach that surpasses traditional parameter-based fault
diagnosis methods, allowing for more accurate fault
location and cause identification. As a result, this method
remains advantageous in addressing uncertainty problems.
However, due to technical reasons, there are still some
shortcomings in the research, and the load parameters
of the line have not been fully addressed, and further
exploration is needed in the future.
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