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Abstract

To optimise the scheduling model for the integrated energy system

(IES), the paper proposes to introduce the combined cooling,

heating, and power generation system into it, and proposes a reverse

learning mechanism to improve the whale optimisation algorithm

(WOA). The improved-algorithm optimized the comprehensive

energy system of the cogeneration system. According to the results,

the WOA converges in the 200th iteration with the reverse learning

mechanism, while the original algorithm takes 400 iterations to

converge. To introduce the carbon trading mechanism (CTM), it

could cut down the operating costs and carbon emissions of the

model. The lowest operating cost of introducing traditional CTMs is

1,889 yuan. The introduction of a tiered CTM resulted in the lowest

carbon emissions of 2.15 t. To reduce operating costs, it is advisable

to account for carbon emissions from electric energy storage (EES)

equipment, especially before the carbon trading price reaches 102

yuan/t. After 102 yuan/t, calculating the carbon emissions of

EES equipment can reduce operating costs. The model established

through research does not link the carbon trading market with the

electricity market, and can further explore the connections between

the two markets. Further achieving the dual goals of low cost and

low-carbon emissions provides strong support for achieving a green

and low-carbon comprehensive energy system.
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1. Introduction

Achieving both low cost and low-carbon emissions is vital
for promoting a sustainable and eco-friendly energy system.
As the social and economic development continues, the
consumption of non-renewable energy sources and the
degradation of the ecological environment continues. It’s
becoming clear to people that it is urgent to protect
the natural environment. Society cannot develop without
carbon emissions, but the harm of carbon pollution to
the ecological environment cannot be ignored. Reducing
carbon emissions is necessary while balancing economic
development. This has led to the emergence of a low-
carbon economy [1]. This document proposes the key
aspects of a low-carbon economy, drawn from the carbon
trading theory, which refers to the emission rights of
greenhouse gases and their tradability. Given the regulation
of total carbon emissions, the greenhouse gas emission
rights represent a limited resource that is tradable
among carbon emitters and other entities, as it displays
characteristics of a commodity [2]. After introducing
this concept into the energy market, a new system of
mutual restraint and balance has been formed between
the carbon trading market and the energy trading market.
At present, the energy industry is primarily focused
on developing low-carbon energy options, with the aim
of gradually reducing the market share of traditional
petrochemical energy. Sources of low-carbon energy, such
as electricity and thermal energy, are progressively gaining
greater market share, thereby reducing the dominance of
petrochemical energy within the energy system. However,
it has created an integrated energy system (IES) [3]
that incorporates various energy sources. The current
stage of IES has not yet fully realised the interaction
and collaborative control of the various energy sources
incorporated in the system, which constrains its efficiency
and reliability. Furthermore, current scheduling strategies
commonly neglect the essential correlations between energy
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sources and the energy market dynamics when managing
multi-energy systems, thus impacting scheduling efficacy
and system stability. To advance the advancement of
low-carbon energy and diminish the carbon emissions
of IES, a reverse learning mechanism was proposed to
enhance the whale optimisation algorithm (WOA). The
improved algorithm was used to study the optimal capacity
configuration and carbon emission scheduling model of
IES. The study will conduct research on the optimal
scheduling model of IES from four parts. The first part is a
review of the current research status of foreign IES systems
and WOA. The second part proposes the construction
method of IES optimal scheduling model, which is divided
into two sections. The first section mainly introduces the
composition of IES system, and the second section mainly
introduces WOA and its improvement principle. The third
part conducts experimental verification on the optimal
scheduling model constructed in the study. The fourth part
is a summary of the entire text.

2. Related Works

IES refers to a system where multiple energy sources are
utilised in the same system to enhance energy economic
efficiency by coordinating the proportion of each energy
source’s CE. Sakalis et al. proposed and designed an IES
that covers all energy types on large crude oil transport
ships to reduce the operating costs and environmental
footprint of large crude oil transport ships. The model
utilises net present value as the objective function, which
enables the recovery of both high-pressure and low-
pressure hot steam leading to an effective promotion of
steam turbine, exhaust gas boiler, and auxiliary boiler
[4]. To meet the diverse energy needs of customers,
Yuan et al. upgraded their energy structure using the
multi energy coupling utilisation platform provided by
IES and proposed a multi-criteria decision-making way on
the basis of IES. It is not only meets the demand for
energy diversification but also improves energy utilisation
efficiency [5]. Gao et al. proposed an optimisation planning
framework that considers reliability to promote the sharing
of user energy between the power grid and IES through
market mechanisms. This framework established a price
estimation model based on reliability theory to maximise
the benefits of IES. The simulation experiment led by the
author validated its effectiveness, analysed its influence in
load growth rate and user reliability demands [6]. Su et al.
proposed a new and robust calculation scheme to evaluate
the safety of IES and derive the complete characteristics
of its steady-state safety zone. This calculation method
can eliminate the errors of existing methods and obtain
complete steady-state safety zone features of IES [7]. Liu
et al. constructed a new energy hub planning framework
based on source load coordination. This framework can
alleviate the natural benefits conflict in system economy
and environment [8].

Guo et al. proposed a reverse learning and a flight
disturbance strategy to optimise the WOA, and then
utilised it to identify the parameters of the static reactive
power compensator. It supports a new estimation way for

precisely ensuring the static reactive power compensator
model parameters [9]. Obadina et al. proposed a hybrid
algorithm to optimise the robotic arm system of master–
slave robots, which can effectively solve the parameter
identification problem of robot models [10]. Gupta et al.
proposed WOA to improve the recognition level of
pressure in EEG signals and applied it to feature selection
and extraction of EEG. This can complete a pressure
recognition accuracy of 91% [11]. Kahya et al. established
a feature selection method built on binary WOA to
address the issue of the transfer function being unable
to balance the exploration and development stages in
the current formula. This method has different types of
time-varying transfer function update techniques, which
have consistency in feature selection, high classification
accuracy, and better convergence [12]. Heraguemi et al.
proposed an improved WOA for mining association rules
to address the high computational cost of data mining
technology. This algorithm is already superior to other
swarm intelligence algorithms, e.g. quality, running time,
and memory usage [13].

In summary, IES is currently the energy system with
the lowest CE and the highest energy utilisation efficiency
among all energy structures. However, its energy efficiency
still needs improvement. WOA is an excellent heuristic
algorithm that is commonly employed for parameter
optimisation in various models. The objective of IES
scheduling research is to optimise its parameters. However,
the global search ability of IES is weak, and it is prone
to falling into local optima. Thus, this study introduces a
reverse learning mechanism to enhance WOA and utilises
it to update IES system parameters to analyse the optimal
scheduling module for the IES system.

3. Optimal CE Scheduling Model Based on
Improved Whale Algorithm

Effective scheduling models can enhance economic effi-
ciency and decrease CE. Chapter one primarily presents
the tasks within each subsystem of IES along with
corresponding mathematical models. Chapter two outlines
the introduction of WOA and the reverse learning
mechanism improvement strategy for WOA.

3.1 A Scheduling Module for Integrated Energy
Systems

The energy of traditional power generation systems is
mainly composed of non-renewable energy sources like
coal and natural gas (NG), making it difficult to utilise
the synergistic economic benefits between different energy
sources. IES is a new approach that combines and
complements multiple energy sources, and Fig. 1 illustrates
its structure [14]–[16].

IES consists of three parts: the energy supply side,
the energy conversion and storage side, and the user
demand side. The combined cooling heating and power
(CCHP) system is an emerging energy comprehensive
tiered utilisation scheme in IES. The system consists of
nine sub models: micro gas turbine, gas boiler, electric
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Figure 1. Operating structure of comprehensive energy microgrid.

boiler, electric refrigerator, absorption refrigerant, NG
network, electric energy storage (EES), P2G, wind and
photovoltaic power generation (PPG) models. In IES, the
working efficiency of micro gas turbines is higher, and its
mathematical model is formula (1) [17]–[19].


PMT (t) = HMT(t)ηMT

(1−ηMT)ηMT
res Kh0

ηMT
res = T1−T2

T1−T0

QMT =
∑
HMT(t)∆t

(1−ηMT)ηMT
res Kh0H

(1)

In (1), PMT (t) and HMT (t) represent the electrical
and thermal power output of the micro-gas-turbine at t-
time. ηMT represents the conversion ratio of the micro
gas turbine. ηMT

res is the waste heat recovery ratio. Kh0 is
the heating coefficient. T1 is the environmental coefficient
where Unit 1 is located, and T2 is the environmental
coefficient where Unit 2 is located. T0 is the real-
time environment temperature where the unit is located.
QMT (t) represents the NG wastage of the micro-gas-
turbine at t-time, and H is the heat value released by the
condensation of water vapour generated by the complete
combustion of NG into water. A gas boiler serves as a
supplementary output when that output is insufficient. The
device directly heats the system through high-temperature

steam generated by combustion, and its mathematical
model is (2). 

PGB (t) = ηGBPGB.gas (t)

HGB (t) = PGB (t) ∆t

QGB (t) =
PGB.gas(t)×∆t

GHV

(2)

In (2), PGB (t) and PGB,gas (t) mean the thermal
power output and gas input power of the gas boiler at
time t. ηGB is the gas to heat conversion ratio of a
gas fired boiler. HGB (t) refers to the heat production.
QGB (t) is the NG usage. GHV represents the low calorific
value of NG. Electric boiler is a commonly used electric
heating conversion equipment that could practically lift
the flexibility of energy systems. It can serve as both a heat
source for the thermal system and a load for the power
system. Equation (3) is the calculation. PEB (t) = PCE (t) ηEB

HEB (t) = PEB (t) ∆t
(3)

In (3), PEB (t) and PCE (t) represent the thermal
output power and power consumption of the electric
boiler at time-t. ηEB represents its electric heating

3



Figure 2. Wind turbine system.

conversion efficiency. HEB (t) is the heating capacity.
Electric refrigeration units are mainly responsible for
improving the overall economic operation level of the
system, and their cooling capacity is in direct proportion
to the power input. While the electricity price efficiency is
high, the cooling load can be output. As expressed in (4). PER (t) = QER (t) · COPER

CER (t) = PER (t) ∆t
(4)

In (4), PER (t) is the cooling load output and QER (t) is
the electrical load input of the electric refrigeration unit at
time-t. COPER is the electric cooling conversion coefficient.
CER (t) is the cooling capacity. Wind power generation
is an important energy supply part of IES. The overall
structure of wind power generation is divided into two
parts, namely, wind turbines and generators, as shown in
Fig. 2.

The probability density model of wind speed for wind
turbines can be predicted using the Weibull distribution
model, and information, such as expected wind energy
density can be calculated based on the prediction. The
mathematical formula between the output power of a wind
turbine and the input wind speed can be expressed by (5)
[20], [21].

PWT (t) =


PW rated (t) vr < v < vco

PN (t) v−vci
vr−vci vci < v < vN

0 0 < v < vci, v < vco

(5)

In (5), c is the standard parameter of the Weibull
distribution. The NG network model is one of the energy
supply models of IES, and there are many similarities
between the current NG network and the power output
network. It includes micro gas turbines, compressors, and
gas storage tanks. The gas well is its energy source, and the
operation process of the NG network starts from the gas

well. The gas pipeline transports energy to be converted
and stored as well as to meet the demand of users. When
NG is transported, energy loss occurs, which causes a drop
in the gas pressure within the pipeline. At this time, the
compressor can adjust the pressure inside the NG pipeline
by compressed NG. Gas storage tanks are comparable
to electrical energy storage equipment in the power grid
system, in terms of their function. NG may be stored when
its economic benefits exceed a certain threshold. However,
when the benefits fall below a critical level, the stored
NG will be transported to the NG system to enhance
its economic benefits. The important components of the
NG system include NG pipelines and compressors, among
which the NG pipeline mainly refers to its flow model,
which is displayed in (6).

QL,mn = sgnp (pn, pm) kmn

√
sgnp (pn, pm) (p2

n, p
2
m)

sgnp (pn, pm) =

 1, pn > pm

−1, pn ≥ pm

(6)

In (6), QL,mn is the gas flow value of NG pipeline-L
from the first node m to the end node n. sgnp represents
the direction of NG transmission. pm, pn represent the
pressure value of network node m,n. kmn represents the
pipeline constant. Equation (7) is the mathematical model
of the compressor.QL,mn ≤ kmn

√
(p2
n, p

2
m)

pm ≤ λc · pn
(7)

In (7), λc represents the compression ratio of
the compressor. EES systems include electrochemical,
electromagnetic, and physical energy storage. Because of
its extensive range of applications and fast operation
speed, IES utilises the electrochemical energy storage
system. Equation (8) shows the mathematical model of
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Figure 3. Equivalent circuit diagram of PPG.

this technology.

PBS (t+ 1) = PBS (t) + αcPBR (t)− αdPBR (t) (8)

In (8), PBS (t)PBR (t) are the charging and discharging
power of the EES device at time t. αc, αd represent the
charging & discharging coefficients. P2G technology is an
emerging technology that can provide auxiliary services
for IES and promote the coupling and complementarity
of multiple energy sources. The operating formula of P2G
devices in IES is (9).

QP2G,r =
nP2G,rPP2G,r

GHV
r = 1, 2, . . . , NP2G (9)

In (9), QP2G,r, ηP2G,r, and PP2G,r, respectively,
represent the output NG flow rate, electricity conversion
efficiency, and consumed electricity power of device r in
the P2G device. NP2G represents the total number of P2G
devices in IES. PPG is an important energy supply part
besides wind power generation, and its basic structure is
Fig. 3.

PPG is a technology that utilises the photovoltaic effect
to convert light energy into electricity, mainly composed
of solar panels, inverters, and controllers. To improve
the output voltage of the PPG system, it is necessary
to connect the photovoltaic cells in series to form a
photovoltaic array. The power output expression of the
V–A characteristic curve of the system’s output energy is
(10) [22].

PPV (t) = PSTC (t)
IING

ISTC
[1 + α (Tc − Tr)] (10)

In (10), PPV (t) and PSTC (t), respectively, refer to
the actual and max-output values of the PPG unit. IING

and ISTC represent the actual and standard values of the
external light intensity received by the PPG unit. Tc is
the correlation coefficient between the PPG output power
and the external environmental temperature. α represents
the actual temperature of the photovoltaic generator unit
battery. Tr is the reference temperature value of the
photovoltaic generator unit battery. To achieve the best
economic benefits of IES, it is necessary to adjust the
output of each subsystem in the IES system according to
user needs.

3.2 Improved Whale Algorithm Based on Reverse
Learning

To achieve the max economic benefits of IES and achieve
mutual collaboration among various subsystems of IES,
it is necessary to optimise the output parameters of each
system. WOA has the advantage of fast convergence speed
and was formally put forward in 2016. It simulates the
predatory behaviour of whales in the ocean, and its process
is Fig. 4 [23], [24].

If the whale population contains N whales and the
problem has D dimensions, then each whale in the whale
population corresponds to a position in D. The location
of the whale that preys the most in the whale group is
the optimum to the issue. WOA is mainly divided into
three stages, namely, encircling prey, preying on prey, and
searching for prey. During the encircling stage, whales
will first observe the area where the prey is located,
and then engage in encircling activities. At this time,
the leading whale is the optimal solution, while other
individuals continuously approach it and update their
position information in real time. Therefore, WOA needs to
first calculate the distance between each individual and the
optimal solution, that is, the positional distance between
the individual in the school and the lead whale, as shown
in (11). 

−→
X (b+ 1) = X ∗ (b)−

−→
A ·
−→
D

−→
D =

∣∣∣−→C ·X ∗ (b)−
−→
X (b)

∣∣∣
−→
A = 2a · −→r − a
−→
C = 2 · −→r

(11)

In (11), b represents the iterations. X ∗ (t) and
−→
X (t)

are the position vectors of the optimal solution and current

position.
−→
A,
−→
C represent the coefficient. a represents the

parameter, and −→r represents a random vector. After
completing the encirclement stage, whales enter the
predation stage, which is divided into two situations.
The first situation is to contract the encirclement net for
predation. In this case,

−→
A takes a value within [−1, 1], and

each whale moves towards the lead whale, updating its
position in real-time as it moves. The second scenario is
spiral bubble predation, in which each individual calculates
its distance to the optimal solution position and sprays
bubbles upwards in the form of a spiral ascent. At this
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Figure 4. WOA flowchart.

point, the fish approached the position of the leading
whale gradually. When whales prey, the probability of both
situations occurring is equal, both of which are 50%. The
mathematical model of whale hunting behaviour is (12).

−→
X (b+ 1) =

X ∗ (b)−
−→
A ·
−→
D if ρ ≤ 0.5

−→
D · ebl · cos (2πl) +X ∗ (b) if ρ ≥ 0.5

(12)

In (12),
−→
D ′ =

∣∣∣X ∗ (b)−
−→
X (b)

∣∣∣ refers to the distance

from the whale to its prey, b represents a constant, and
l is a random no. within [−1, 1]. After completing the
predation, the fish school will start searching for prey
again. At this stage, individuals will no longer approach
the lead whale and start randomly searching for prey. The
behaviour model of this stage is (13).

−→
D =

∣∣∣−→C · −→X r −
−→
X
∣∣∣

−→
X (b+ 1) =

−→
X r −

−→
A ·
−→
D

(13)

In (13),
−→
X r represents the random position vector

for population selection. WOA is iteratively calculated
from an initial generation. If the selected initial generation
is located very close to the optimal solution, it can
improve the overall running speed and convergence rate
of the algorithm. The reverse learning mechanism can
help the algorithm select the initial generation position
closer to the optimal solution. Therefore, the reverse
learning mechanism is proposed to improve WOA to
improve the running speed and convergence rate of WOA.
The initial generation of WOA in the D-dimension is
Xi = {xi,1, xi,2, . . . , xi,D}, then the reverse generation
is X ′i =

{
x′i,1, x

′
i,2, . . . , x

′
i,D

}
, and the expression for the

reverse generation is (14).

x′i,j = (xmax,D + xmin,D)− xi,j (14)

In (14), i represents the feasible solution numbers in
the search-space, and j represents the dimension of feasible
solutions in the search space. To enhance the variety of
search and cut down the impact of diversity, an exponential

decreasing function is proposed to optimise the parameter
a in WOA. The calculation method is (15).

a = amin + (amax − amin)× e
−1

Max iter−10 (15)

The process of improving WOA is Fig. 5.
The initial population generates N initial positions

in the solution space, and the reverse population also
generates N reverse initial positions. After initialising
WOA parameters, calculate the fitness values of 2N
initial positions, and take the current best as the leader
whale of the population. After determining the lead
whale, it begins the cycle of WOA. Equation (12) selects
one predatory behaviour for position updating, which
is updated using (13) after capturing prey. Upon the
completion of enhancing WOA, it is imperative to reassess
the algorithm’s limitations, particularly the constraints on
interactive transmission power between the subsystem and
the primary network, as depicted in (16). PPE,min ≤ PPE (t) ≤ PPE,max

PSE,min ≤ PSE (t) ≤ PSE,max

(16)

In (16), PPE,min and PPE,maxrepresent the minimum
and maximum power of purchased electricity from the
distribution network. PSE,min and PSE,max represent the
minimum and maximum power to sell electricity to
the distribution network. The second constraint is the air
source point, as shown in (17).QS,min ≤ QEB (t) ≤ QS,max

QS,min ≤ QMT (t) ≤ QS,max

(17)

In (17),QS,max andQS,min represent the maximum and
minimum amount of NG purchased from the NG network.
Finally, there is the node pressure constraint, as shown in
(18).  Pn,min ≤ Pn (t) ≤ Pn,max

Pm,min ≤ Pm (t) ≤ Pm,max

(18)
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Figure 5. Improved WOA algorithm process.

Figure 6. Impact of carbon trading mechanism on IES.

In (18), Pm,min and Pm,max are the lower and upper
pressure limit of head node m. Pn,min and Pn,max are the
lower and upper pressure limit of end node n. In addition
to the constraints, it is also necessary to calculate the
operating costs of each system, as shown in (19).

foc =
∑

[fGAS (t) + fPSE (t) + fMU (t)] ∆t (19)

In (19), foc represents the total maintenance cost of
the system. fGAS (t) represents the NG purchase cost in
period t. fPSE (t) represents the cost of purchasing or
selling electricity from the distribution network in period
t. fMU (t) represents the maintenance cost of each unit
in period t. Studying the best scheduling behaviour of
IES also needs to consider the effect of LC-Eco on IES.
After introducing a carbon trading mechanism (CTM),
an additional penalty cost needs to be considered in the

parameters of IES. Therefore, on the premise of meeting
user needs, the system will prioritise CCHP and electric
boiler units, and the effect of CTM on IES is Fig. 6.

4. Simulation Experiment Results

To confirm the effectiveness of the reverse learning
mechanism in enhancing WOA, a study was performed.
Energy data from a specific region in 2020 was applied
as a training set. A computer was employed for the
comparison of running speed, convergence speed, system
load, fitness, operating cost, and unit output of improved
WOA, WOA, and linear programming. The computer used
a Windows 7 system, with an Inter (R) Core (TM) i5-4460
processor and a 3.02 Hz CPU. The study was conducted
in this environment. The comparison was conducted using
Matable7.0 software. The results are shown in Fig. 7.
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Figure 7. Performance comparison between improved WOA and WOA: (a) convergence speed comparison and (b) running
speed comparison.

Figure 8. Daily load and solar output prediction.

Figure 7 shows the performance comparison of two
algorithms: WOA and its improved version. Figure 7(a)
shows that the enhanced WOA achieves its optimal solution
in about 200 iterations, whereas the standard WOA
requires 400 iterations to reach the same. The total cost of
IES in the improved algorithm is 1,900 yuan, compared to
1,940 yuan in the original WOA. In Fig. 7(b), the execution
speeds of the two algorithms were similar during the initial
iteration. But as iterations grow, performance differences
begin to manifest. Specifically, after 400 iterations, the
improved WOA took 12.84 s, while the original WOA took
9.86 s. This study indicates that the improving WOA is
effective. For IES energy scheduling, regional user demand
is a key consideration. Predictions were made for daily wind
power, solar energy production, and other system loads in
specific regions, with detailed results shown in Fig. 8.

In Fig. 8, during the day, the maximum photovoltaic
output can reach over 100 kW, and the cooling load output
is relatively stable at around 70 kW throughout the entire
time period. The heat load has a higher output during the
noon period, reaching over 110 kW. The output in the early

morning is relatively low, around 90 kW. The electrical and
gas loads are related to the daily life of the people in the
area, with the highest electrical load reaching 120 kW and
the lowest being 50 kW. The maximum gas load is 110 kW,
and the minimum is 55 kW. The wind turbine output in this
area is relatively low, with a maximum of around 45 kW
and a minimum of only 15 kW. The purchase or sale of IES
from the distribution network in the region can be classified
into peak, valley, and normal periods, based on daily load
forecasting, with different prices assigned to each period.
To demonstrate the potential of CTM in optimising the
scheduling of IES LC-Eco, this study employs an improved
WOA algorithm to estimate the variation in the fitness
value, total operating cost, and CE of IES under different
conditions. Figure 9 shows the results.

Figure 9(a) shows the optimisation iteration results of
the algorithm in different scenarios. The system without
CTM converges in the 140th iteration, and its fitness value
is the highest, 1,940 yuan. The system with traditional
CTM converges in the 200th iteration, and its fitness
value is 1,890 yuan. The system that introduced a tiered
CTM converged in the 250th iteration, with a fitness value
of 1,900 yuan. Figure 9(b) shows the optimal operating
costs of the system in different conditions. Among the
three scenarios, the system without introducing a CTM
has the highest operating cost and CE. The system that
introduces traditional CTMs has the lowest operating cost.
The system that introduces a tiered CTM has the lowest
CE. After determining the impact of introducing different
CTMs on IES, the study investigated the output of each
unit under different scenarios, as shown in Fig. 10.

Figure 10(a) shows the output of each IES unit without
introducing a CTM. There is a significant difference in
it, with the highest output of the gas furnace reaching
300 kW and the lowest output of the electric refrigeration
unit being only 20 kW. Figure 10(b) shows that under the
introduction of traditional CTM. The output of the gas
furnace has decreased, and the peak output has decreased
by about 30 kW. The output of the CCHP unit has
increased, while the other units have remained basically
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Figure 9. Optimisation iteration and comprehensive operating costs in different scenarios: (a) iterative optimisation in
different scenarios and (b) operating costs and carbon emissions for different scenarios.

Figure 10. Output of each unit in different scenarios: (a) carbon free trading mechanism; (b) carbon free trading mechanism;
and (c) carbon free trading mechanism.

unchanged. Figure 10(c) shows that of a tiered CTM. The
output of the gas furnace has significantly decreased, with
a maximum of only 220 kW. The output of the electric
boiler and CCHP units has also increased. The study also
explored the EES devices impact on the operating status
of IES, as shown in Fig. 11.

Figure 11(a) shows the IES without calculating the
CE of EES equipment. In this scenario, as the carbon

trading price increases, the output of gas furnaces and
electric refrigerators gradually decreases, while the output
of CCHP and electric furnaces begins to increase. When
the carbon trading price is 48 yuan/t, the gas furnace and
electric furnace stop operating, and the system heating is
entirely responsible for CCHP and electric furnace. When
the price is 32 yuan/t, the EES equipment starts to operate
and increases. When the price increases to 108 yuan/t, the
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Figure 11. Operating status of IES in different scenarios: (a) the output of each unit without introducing carbon trading
mechanism and (b) the output of each unit without introducing carbon trading mechanism.

Figure 12. Changes in CE and operating costs of the system under different scenarios: (a) changes in carbon emissions and
(b) changes in operating costs.

output of EES equipment begins to decline. Figure 11(b)
shows the IES for calculating the CE of EES equipment. In
this scenario, when that price increases to 63 yuan/t, the
gas furnace stops operating, and at this time, the output
of CCHP reaches its maximum. When that increases to
43 yuan/t, the EES equipment begins to operate and
continues to increase its weight. Once it rises to 102 yuan/t,
the EES equipment output still rises, yet the growth rate
starts slowing down, causing the CCHP output to decrease.
Finally, the study compared the changes in CE and system
operating costs under two scenarios, as listed in Fig. 12.

Figure 12(a) shows a comparison of CE. When the
carbon trading price is 52 yuan/t, the system without
EES equipment reaches the min CE. When the price is
55 yuan/t, the system of the energy storage equipment
reaches the minimum CE. When it is 84 yuan/t, the CE
of the two scenarios are equal. Prior to this, the CE
of electricity storage devices were lower than those of
electricity storage devices. Figure 12(b) shows the initial
stage of comparing the system operating costs. In both
scenarios, the operating costs of the system are almost
the same. When that is 9 yuan/t, the operating costs of
the electricity storage equipment begin to be higher than
those of the non-electricity storage equipment. While it

is 102 yuan/t, the costs are consistent. If the price keeps
increasing, the cost of the system without EES equipment
would eventually surpass the operating cost of the EES
equipment system.

5. Conclusion

To study the output of each unit in IES’s LC-Eco optimal
dispatching model and optimise the model, reverse learning
mechanism is proposed to improve WOA. Moreover, the
improved WOA was utilised to lift the model’s parameters.
The results show that the improvement of WOA through
research is effective and feasible, with a 50% increase in
convergence speed, and the convergence was completed
only in the 200th iteration. After introducing a tiered
CTM, the improved WOA has the lowest CE, at 2.15 t.
After introducing the traditional CTM, the system has the
lowest operating cost of 1,889 yuan. After introducing the
traditional CTM, the output of the gas furnace decreased
by about 30 kW, which was supplemented by CCHP. After
introducing a stepped CTM, the output of the gas furnace
decreased by 80 kW, which was supplemented by electric
boilers and CCHP. After introducing and calculating the
CE of EES equipment, the operating cost of the system will
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decrease when the carbon trading price reaches 102 yuan/t.
The study explored the use of improved WOA to optimise
the LC-Eco scheduling model of IES. In this model, the
carbon TM is not linked to the electricity market, and
further research can be conducted on the correlation
between CTMs and electricity market transactions. The
proposed model in the study heavily relies on the accuracy
and correlation of WOA adjustment. Nevertheless, its
applicability to all IES scenarios or regions with different
energy distributions remains doubtful.
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