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Abstract

Visual simultaneous localization and mapping (VSLAM) is a key

algorithm in the navigation of mobile robots to be studied by

many researchers. In VSLAM, it is the first and fundamental

key technology to determine the common features of the different

views of the same object from the acquired environment images.

It determines the adaptability of the VSLAM algorithm to difficult

environments with poor textures and structures. Therefore, the

challenge of the VSLAM algorithm imposed by the poor texture

and structure of the indoor environment is indeed the requirement

of the good matching technology. To this end, that two-stage frame

matching in VSLAM based on feature extraction with adaptive

threshold for indoor texture-less and structure-less is proposed in the

paper. The ORB algorithm with fast extraction speed and strong

real-time performance is improved, adding adaptability to the FAST

corner detection algorithm while increasing the scale invariance,

so that the algorithm can automatically adjust the threshold to

get enough feature points. After comparing the common feature

matching methods, the violent matching was selected as the coarse

matching, and the improved mismatches elimination method based

on the motion smoothing model is proposed. The experiments show

the improved feature extraction and matching algorithm Ours can

extract enough key points in texture and structure-free environment,

refine the local points to achieve better feature matching between

current frame and reference frame, and provide a basis for subsequent

pose estimation.
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1. Introduction

With the wide application of mobile robots, visual
simultaneous localisation and mapping (VSLAM) algo-
rithm has become research hotspots, which is a key
algorithm in navigation of mobile robots of the dynamic
environment and objects. The applicational problems
which were produced from the original static use of VSLAM
into dynamic environment are studied, such as handled
dynamic objects with mask loop closing [1], improved
the performance of SLAM in dynamic environments
using parallel map [2]. A consensus estimation algorithm
was proposed to correct the weight distribution of local
information to ensure the accuracy of the map under
dynamic network conditions [3]. A cubature-extended H∞
filter-based SLAM algorithm (CEH∞F-SLAM) is proposed
to possess advantages of both algorithms [4]. VSLAM is
proposed based on the RatSLAM method to reduce the
higher computational requirements and increase the lower
accuracy [5]. It is the first key technology to extract the
object feature points and determine the matching of the
same object in VSAM. It determines the adaptability
of the VSLAM algorithm to difficult environments with
poor textures and structures. Therefore, the challenge of
the VSLAM algorithm imposed by the poor texture and
structure of the indoor environment is the requirement of
the target frame matching technology.

To overcome these challenges, von Gioi et al. [6] used
line segment detection (LSD) to extract the corresponding
line features in the untextured environment based on
the structural regularity of the indoor environment and
represented a 3D line with as a segment with two endpoints.
Van Opdenbosch and Steinbach [7] build a small workspace
environment map, whose endpoints do not easily disappear
from the camera view, based on the system architecture of
ORB-SLAM 2, using the LSD. Zhu et al. from Shanghai
Jiao Tong University studied the line characteristics in
the detection environment and improved the original
KinectFusion method [8], which is very different from the
ordinary feature point detection method. The matching
accuracy of the motion estimated by line matching in areas
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with few texture and few feature points is higher than the
point matching [9]. A graph-based visual SLAM system
characterised by Zhou et al. [10] compared to the point
features, the line features provide much richer information
about the environmental structure, making it possible to
infer the spatial semantics from the maps. Compared with
the point-based SLAM system, it has better reconstruction
performance in both indoor and outdoor rich texture
environments, and the disadvantage is that it cannot be
used normally in an unstructured environment where the
texture is not obvious.

The fusion of point and line features is a method that
has been more applied in the SLAM field in recent years.
Compared with the methods that use only point features
or line features, the method of combining point and line
features can be widely applicable to low-texture scenes
and has better accuracy and robustness. Pumarola et al.
proposed a real-time single point system with point and
line (PL-SLAM) based on the ORB-SLAM 2 framework,
allowing the integration of line representation into the
SLAM mechanism. When most feature points disappear
from the input image, it can still estimate the camera
attitude and 3D map by detecting five lines in three
consecutive images [11]. The system can run in low-
texture scenes, but not in environments where structures
are similarly blurred. Ruben et al. proposed a stereo
SLAM system using points and lines and additionally
extended a closed-loop module based on points and lines,
which can be built in a low-texture environment. However,
although the new closed-loop method increases robustness,
the high computational cost makes it difficult for the
system to achieve real-time [12]. Lee et al. developed
a low-cost embedded indoor service robot system based
on vanishing point and vanishing line landmarks and
proposed a new method for implementing SLAM using
forwards monocular vision sensors[13]. This method has
good performance in complex scenarios without textured
areas, environmental changes, and with moving obstacles,
but is poorly applied in structure-free environments. The
team of Hunan University proposed a complete high-
precision SLAM system based on the combination of point
and line information, and proposed a line-based localised
point refinement algorithm to eliminate the outlier [14].
The reprojection error optimisation model of points and
lines is established, and extended to the local bundle
adjustment (BA) [15]–[17], which can be built in non-
textured scenes. However, the disadvantage is that the
highly redundant point cloud requires a large amount of
storage resources, and the occlusion problem of extracting
line features is not solved, and it is difficult to achieve in a
non-structural environment.

But feathers of point and line is played of distributions

of the geometry in environment, and adaptive characters

of feature extraction to various kinds of geometry with

adaptive threshold were necessary to raise the improve

the extract accuracy, and more comprehensive and refined

extract must is combined with them to difficult feather

extraction to the poor texture and structure of the indoor

environment. The violent matching was selected to improve

mismatches elimination method based on the motion

smoothing model is proposed. Hence, the paper presented
such an algorithm based on the concept. Study protocol
is presented in Section 2 and experimental analysis is
presented in Section 3. The contributions of the paper is to
combine adaptive feature extraction to catch the point of
feature more with the violent matching to use of existing
the point of feature better to improve the performance of
the template matching algorithm for the same object in
VSAM that determines work effect in harsh environments.

2. Study Protocol and Implementation Method

2.1 Study Protocol

The ORB algorithm has currently been commonly used
feature extraction algorithms was proposed in 2011,
using the oriented features from accelerated segment
test (oFAST) [18] algorithm for feature point extraction,
namely, by adding the direction information to the
extracted FAST angles. ORB has the advantage of fast
feature extraction speed and can basically meet the demand
of real-time performance. Therefore, it has too little
feature extraction and no scale invariant, so that it can
extract enough feature points in texture and structure-free
environment.

Common feature matching algorithms include Brute-
Force (BF) matching algorithm [19], fast library for approx-
imate nearest neighbors (FLANN) [20] and RANSAC [21]
algorithm. It can be seen that the violent matching method
tries all the matches as much as possible in both the
textured and untextured scenes, getting a large number
of matching pairs, and there are also many mismatches
in the textured scenes. Compared to the number of the
mismatches for violent matches, the FLANN algorithm
decreased in both textured and untextured environments.
However, the number of matching pairs in the texturless
environment is also small, so it is very suitable for feature
matching in high-texture scenes than the violent matching
FLANN method. Therefore, the RANSAC algorithm is
often used to eliminate mismatches in practise. Compared
with violent matching and FLANN, this algorithm has
no mismatch in either textured or no textured scenes,
which has very good robustness. However, the RANSAC
algorithm has some limitations. If the point set sample is to
be optimal, the number of iterations must be large enough.
Especially in the untextured environment, not only is it
not easy to ensure the matching accuracy but also has a
very large computational cost.

Therefore, to extract enough feature points, the ORB
algorithm is improved by enhancing the scale invariant
and adaptive setting the corner point determination
threshold; to be suitable for no texture and no structure
environment, the violent matching device which is easy
to implement and has rich matching set is used as
coarse matching, and then the improved motion smoothing
model algorithm is eliminated to improve the accuracy
and reliability of the feature matching algorithm. The
proposed study protocol which is combined the improved
ORB algorithm with the violent matching is presented
as follows.
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Figure 1. Improved ORB algorithm feature extraction diagram.

2.2 Improvement of the ORB Feature Extraction
Algorithm

The improvement of the ORB feature extraction algorithm
is mainly in two parts. In the first part, the image scale-
in-variance is enhanced by constructing a Gaussian-scale
spatial pyramid. Equation (1), the total number of layers
of the pyramid is defined as the L layer, set the scale of the
input image as M ×N , select the smaller value between M
and N , and the size of each layer image is determined by
down-sampling from the upper layer, and different spatial
scale information can be extracted from the same picture.

L = log2 [min (M,N)− 2] (1)

The scale of each layer is calculated as follows:

σ (l) = σ0 × 2
l
2 (2)

where l represents the l th layer and σ0 represents the
initial scale. For each layer, key points are extracted at
multiple scales to increase the scale-invariant properties of
the FAST algorithm.

Next, the FAST corner point detection algorithm
is improved. Since the minimum contrast threshold of
the feature point and its surrounding pixels determines
the selection of key points, the lower the threshold, the
more key points, so different scenarios require manual
threshold adjustment. Based on this method, the FAST
detection algorithm is improved, which can set the
determination threshold around the corner points without
manual adjustment.

The candidate feature point x and its grey value
I (x) were selected, centered on x, with 16 pixels
{I (yi) , i = 1, 2, . . . , 16} around the search radius R = 3.
The determination of FAST angles is related to the grey
scale change of the image, so a dynamic adjustment
strategy is used to handle different scenarios. The mean
of the grey change at the corner was calculated and the
quantitative relationship between it and the threshold was

balanced by the proportional coefficient k. The formula for
calculating each frame threshold is expressed as follows:

ε = k

(
1

m

m∑
i=1

Iimax −
1

m

m∑
i=1

Iimin

)
/Iiavg (3)

where Iimax
, Iimin

, and Iiavg are all statistics, Iimax
and Iimin

represent the m largest and m smallest grey values on the
circle, respectively, Iiavg is the mean of the grey values on
the circle, k represents the proportional coefficient, and ε
is the threshold.

Select N points in I (yi), and if all N points satisfy
‖I (yi)− I (x)‖, then x is the key point. Through the
Formula of (4), the improved FAST algorithm can also
adaptively extract enough feature points in the scene
without texture and structure.

The ORB algorithm consists of the oFAST algorithm
and the rBRIEF algorithm, and the oFAST increases the
rotation in variance of the ORB algorithm by adding an
additional orientation information,θ. That is, for the key

point x, its direction is represented by the vector
−→
OC, where

O is the origin of the coordinate system, and C represents
the neighbourhood centre of the key point x. The key
point x is then described by the rBRIEF algorithm with
a rotation factor rBRIEF. The algorithm first performs
Gaussian smoothing of the image, and then selects a certain
number of point pairs of D, and generally selects 256 pairs.
Then Gaussian sampling is performed near the key point
x, and direction θ is obtained by oFAST algorithm. The
new point pairs are calculated as follows:

Dθ = θD (4)

The final comparison with the values of the new dot pair
resulted in 256-bit descriptors. Figure 1 shows the feature
extraction graph of the improved ORB algorithm, the
Gaussian distribution enhances the scale consistency of
the algorithm, the adaptive FAST algorithm guarantees
enough key points, and the rotation factor improves the
rotation invariance of the algorithm.
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2.3 Improved Motion Smoothing Model
Mismatches and Elimination

The motion-smoothing model was proposed by Lin et al.,
as the equation [22]:

lim
4p→0

fk (P +4P )− fk (P ) = 0, P = [x, y]
T ∈ R2 (5)

where P represents the pixel coordinates, 4P is the
increment of P , fk (P ) is the smoothing function and R2 is
the n-dimensional space. Functional values around P tend
to be equal, however, the model is unstable due to the
random distribution of mismatches.

The two plots are the reference RGB frame Ir and
the current RGB frame Ic, respectively. After violence
matching, obtain the set Xi,c→r = {x1, x2, . . . , xm} of
nearest neighbour feature matching pairs. The number of
matched pairs with correctly matched regions ϕi = 2 is
greater than the number of matched pairs with correctly
matched regions ϕi = 0. By determining the support
number of the matching pairs within the region, the wrong
matches can be eliminated. The number of matching pair
supports F (xi) can be expressed as (6):

F (xi) = |Xi| − 1, Xi ⊆ Xi,c→r (6)

here Xi represents the sets of matching pairs and xi within
the surrounding neighbourhood.

Two hypotheses are proposed for the improvement
of mismatch elimination. First, the selection region is
small enough, with both correct and incorrect matches,
and the ident distribution of matching pairs. Then, the
distribution of the matching pair support number F (xi)
in the neighbourhood can be approximated as a binomial
distribution:

F (xi) ∼

B (Kn, pt) , xi ∈ True

B (Kn, pf ) , xi ∈ False
(7)

where xi represents the ith matched pair, n represents
the number of matched pairs, xi ∈ True indicates that xi
belongs to the correct matched pair region, and xi ∈ False
indicates that xi belongs to the mismatched region.
K represents the number of small disjoint regions around
xi, and pt and pf indicate the probability of correctly and
mismatched pairs, respectively.

Then, the mean value of the distribution is:Et (xi) = Knpt, xi ∈ True

Ef (xi) = Knpf , xi ∈ False
(8)

The standard deviation of this distribution can be
calculated as:σt (xi) =

√
Knpt (1− pt), xi ∈ True

σf (xi) =
√

Knpf (1− pf ), xi ∈ False
(9)

If the mean of the correctly matched and mismatched
distributions separates by sufficiently large values relative
to the standard deviation of the distribution, it represents a

Figure 2. Schematic diagram of cell (r, c).

large interval between the correctly distributed B (Kn, pt)
and the B (Kn, pf ) incorrectly distributed, and indicating
that the value of F (xi) becomes a useful indicator to
distinguish true and false matches. Therefore, the design
parameter Px to evaluate the distribution area, which can
be expressed as:

Px =
Et (xi)− Ef (xi)

σt (xi)− σf (xi)

=

√
Kn (pt − pf )√

pt (1− pt) +
√
pf (1− pf )

(10)

From (10), it can be concluded that Px and
√
Kn

are proportional, that is, the distribution interval is
determined by the small area K and the number of
matches n which determines the performance of mismatch
elimination.

In the actual operation of the algorithm, the two
images were divided into G non-repeating grid cells. The
grid cell r in the reference RGB frame Ir was matched
to the grid cell c in the current RGB frame Ic, and
each cell pair (r, c) and surrounding regions were used to
evaluate the support number of F (xi) matches. According
to the empirical value G = 20 × 20 cells corresponding to
10,000 feature points, the mean of the matched pair n is 25.
When n is large enough, the constraints is strong but not
enough features in scenes without texture. Therefore, to
adapt to the environment without texture and structure,
the algorithm divides the image more by increasing the
number of small regions K and G, and counts the number
of matches in more regions. With G = 30 × 30, the
image is divided into more cells on the original basis, and
the number of small areas K is added to calculate the
55 grids around each cell, so that more matching numbers
can be calculated in the disjoint small areas, and the
matching accuracy of the algorithm is improved, as shown
in Fig. 2.
{rk, ck} represents the small area of the k pair in the

(r, c) neighbourhood meets the Ir and Ic motion smoothing
model, and in the neighbourhood of the 5×5 grids around
the cell pair (r, c) F (xi) can be expressed as:

F (xi) =

25∑
k=1

|Xrk,ck | − 1 (11)
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Here Xrk,ck is the number of matching pairs in the
{rk, ck} region.

F (xi) divide cell pairs into true and false sets {T, F},
with the following formula:

{rk, ck} ∈

True, F (xi) > 6
√
ni

False, otherwise
(12)

where ni is the average of the number of features
in the 25 cells, and the empirical value of 6 is the
parameter for establishing a quantitative relationship
between F (xi) and ni. Cell matching pairs that satisfy
F (xi) > 6

√
ni are correct matches and otherwise

mismatches.
In the algorithm, each cell should first be traversed

from 1 to G in Ir, and the same cell from 1 to G in Ic,
select the cell c with the most matching pairs with the cell
r, get (r, c), then calculate the number of matching pairs
Xrk,ck , sort by calculating the support number F (xi), if
F (xi) > 6

√
ni, {rk, ck} for the correct match set, otherwise

the false match set, and eliminate. Since many features are
located at the edge of the grid, the above steps are iterated
three times, and each time the grid moves a half of the cell
width in the horizontal, vertical, and diagonal directions,
resulting in the refined localised point.

3. Improved Feature Extraction and Matching
Experimental Analysis

Experiments were tested on the algorithm by the TUM
dataset under the Ubuntu16.04 system. Here choose four
challenging scenes with no texture with structure a) fr 3
str not far, b) fr 3 str not near wl and no texture
with no structure c) fr 3 nostr not far, d) fr 3 nostr

not near wl scenes. Where far and near represent the
distance of the camera from the scene, and wl represents
the closed-loop loop. Set the ratio threshold ratio = 0.7,
and the improved feature extraction and matching method
is represented by Ours. Feature extraction and matching
in four different scenarios were conducted on SIFT +
ratio, SURF + ratio, ORB + ratio, and Ours through
OpenCV3.2.0, and the maximum quantitative threshold of
key points was set to 5,000 to extract as many key points
as possible. Feature extraction and matching experiments
are shown in Fig. 3.

In Fig. 3, SIFT + ratio can extract key points in
these scenes without texture, but it can extract very
little to obtain enough matching pairs. SURF + ratio
failed in feature extraction and matching in the four
scenes without textured and without textured structure.
ORB + ratio extracted a large number of key points,
but the ratio method relying on distance discrimination
produces considerable mismatch in texture-less scenes and
fails to get more correct matching pairs. In contrast, the
improved feature extraction and matching algorithm Ours
is independent of distance and is able to retain more correct
matches in extreme scenarios, significantly improving the
matching accuracy.

Since the four scenarios in Fig. 3 are still scenarios, to
compare the correct matching ratio and running time of

Figure 3. Comparison of feature extraction and matching
algorithms in texture-less scene.

the algorithm, continuous video segments in the TUM-fr 3
dataset were selected for performance testing, as shown in
Fig. 4.

Figure 4 shows the internal point numerical statistics
of the four sequences, in Fig. 4(a) the sequence running
time is 27.28 s, in Fig. 4(b) the sequence running time is
36.44 s, in Fig. 4(c) the sequence running time is 15.79 s,
and in Fig. 4(d) the sequence running time is 37.74 s.
From Figs. 4, SURF + ratio failed in all four scenarios.
The SIFT + ratio algorithm extracts a small number
of key points in both Fig. 4(a) and (b), and it fails at
around 13 s. ORB + ratio has fewer localized points in
the four sequences. Under the same threshold constraint,
the improved algorithm Ours can get more localised points
with strong stability.

Statistics are made on the local points in Fig. 4(a)–(d),
respectively, and the correct matching ratio refers to the
percentage of the local points after using the RANSAC
algorithm, i.e.

Correct matching ratio =
NRANSAC

Ninliers
(13)

The correct matching ratio of Fig. 4 is calculated
according to (13), and the results are shown in Table 1.
The improved method Ours has a correct matching rate of
more than 82% in a textured and structure-free environ-
ment, so the method can not only guarantee a sufficient
number of localised points but also obtain enough accurate
matching pairs.

Although SIFT, SURF, and ORB all use the same ratio
test method for local point refinement, they will also have
large differences in computation time because different
extractors output a different number of key points. The
running time of the algorithm was calculated by dividing
the total time by the number of local points, i.e.

Running Time =
Timetotal
Ninliers

(14)

According to Table 2, the average running time of
Ours is 0.03 µs, which is only 0.01 µs slower than that
of ORB + ratio. Therefore, the improved algorithm also
shows very good performance in running time.
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Figure 4. Statistics of inlier numbers: (a) fr3 str not far dataset; (b) fr3 str not near wl dataset; (c) fr3 nostr not far dataset;
and (d) fr3 nostr not near wl dataset.

Table 1
Correct Matching Ratio Compared Among Four Feature Extraction Algorithms (%)

fr3 str not far fr3 str not near wl fr3 nostr not far fr3 nostr not near wl

SIFT+ratio 77.13 76.88 — —

SURF+ratio — — — —

ORB+ratio 66.41 66.20 56.52 56.44

Ours 86.78 86.33 82.51 82.30

Table 2
Comparison of Average Running Time of Four Algorithms (µs)

fr3 str not far fr3 str not near wl fr3 nostr not far fr3 nostr not near wl

SIFT+ratio 1.30 1.31 — —

SURF+ratio — — — —

ORB+ratio 0.03 0.03 0.02 0.02

Ours 0.02 0.02 0.03 0.03

4. Conclusion

In indoor environment with texture-less and structure-less,
the object view lacks a feature point. And better creative
or logical alternative scientific solution is to get more
useful information of feather points similar to improving
resolution rates and to match every got points one by one.
In fact based on this concept, the FAST detection algorithm
is improved, which can set the determination threshold
around the corner points without manual adjustment. For

to make use of the feather points,the violent matching was
selected as further to treat them. The experiments show
the the correctness and usefulness of the method proposed
in the paper. The results of this paper show that the
adaptability and combination of the algorithm improves its
speed and accuracy. Under the premise that the computing
power is relatively satisfied, it is an inevitable direction of
the algorithm improvement. The algorithm in this paper
has been applied to VSAM system and will be further
investigated.
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