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Abstract

The Kalman filter (KF) is the most well-known estimation strategy

that yields the optimal solution to the linear quadratic estimation

problem. The system in such applications shall be well modelled

assuming the presence of Gaussian noise. While the KF is effective

under the stated conditions, it lacks robustness to other types of

disturbances. Therefore, numerous variants of the KF have been

developed to accommodate its limitations. The smooth variable

structure filter (SVSF) is an alternative solution with improved

robustness, especially in the case of modelling uncertainties. It is

based on a sliding-mode technique that offers robustness at the cost

of optimality. On the other hand, some algorithms and solutions

involve with several possible operating modes and generate an

estimation based on the output of these models, i.e., the static

multiple models (SMMs) that obtain the estimates based on the

weighted statistical fusing of the outputs of the models depending

on the likelihood of each mode. This paper introduces an adaptive

formulation of the SVSF that is reformulated based on SMMs.

The proposed model is applied and tested on an electro-hydrostatic

actuator (EHA). The proposed method takes the advantages of the

SVSF’s robustness and stability while reducing the estimation error

due to the use of an adaptive modelling structure. The results show

an improvement on the SVSF performance, where the root mean-

squared errors are reduced by 41%, 99%, and 75% for the position,

velocity, and acceleration estimated states. Therefore, the proposed

method is a good candidate for parameter and state estimation

problems.
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Table of Nomenclature

Symbols Representation
◦ Schur product.

X+ Pseudoinverse of X.

X−1 Inverse of X.

X̂ Estimated value of X.

|X| Absolute value of X.

A System matrix.

B Input matrix.

C Measurement matrix.

Xk|k The a posteriori value of X at time .

Xk|k−1 The a priori value of X at time .

uk Input value at time k.

µjk Weight at time k for each model M j .

σ2
j The variance of model M jM j .

sgn Sign function.

n, m Number of states and measurements,
respectively.

γ SVSF coefficient matrix.

ψ Boundary layer vector.

zk Measurement value at time k.

P Error covariance matrix.

Q System noise’s covariance matrix.

R Measurement noise’s covariance matrix.

x State vector.

z Measurement vector.

ez Error in measurement.

Kk Correction gain at time k.

M j Model j structure.

T The time step, 1 msec.

sat Saturated function.

r Number of models for SSM.

diag Convert the vector to a diagonal matrix where
the elements of the vector are the diagonal
elements of the matrix.
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1. Introduction

Estimating the dynamic behaviour involves the extraction
of important values known as states from noisy measure-
ments [1], [2]. States change over time and are typically
governed by equations that describe system dynamics [3].
The estimation process is referred to as filter as it tries
to minimise the noise effect. Most of the filters try to
minimise the error (difference between the actual and
estimated state values) while simultaneously reducing the
effects of noise. The other types of filters try being robust
to disturbances [3]. Disturbances and noise are typically
present in measurements and may be caused by the sensor
quality (system uncertainties) as well as environmental
factors (measurement uncertainties). System uncertainties
may be caused by an inaccurate model and/or variations
and nonlinearities in the physical system parameters.
Reliable estimates of state and/or parameters are necessary
for safely and accurately controlling a system in real
time. When system dynamics are changed abruptly in
the presence of faults, adaptive estimation strategies that
combined both types of filters can be used to mitigate
inaccurate estimation. They maintain the stability of the
filter during the fault while reducing the error in the
estimation.

Kalman expanded on the research of his predecessors
and introduced a new solution to linear filtering and
tracking problems [4]. He derived a filter that utilized linear
models and measurements to yield an optimal estimation
based on strict assumptions. This filter later became known
as the Kalman filter (KF). As the KF is applicable to linear
Gaussian models, several works were conducted to modify
the KF and make more applicable to nonlinear and/or
non-Gaussian models, i.e., extended KF and unscented
KF [4].

Another branch of estimation methods is still devel-
oping in parallel to the KF and its variants. This branch
includes the well-known sliding-mode observers (SMOs).
These observers are based on variable structure (VS)
and sliding-mode (SM) techniques [5]–[7]. Both techniques
consider the system has discontinuity in its structure.
Therefore, they define discontinuation hyperplanes that
divide the state space into different regions; within these
regions, the equations used to describe the system are
continuous [8], [9]. The name “VS” is chosen because
system dynamics may be mathematically described by a
finite number of equations.

VS theory provided the foundation for VS control
(VSC). In VSC, the controller signal is formulated as
a discontinuous state function, such that discontinuity
hyperplanes are introduced [8], [9]. The most well-known
type of VSC is the SM controller (SMC) [6], [10]. SMC
makes use of a discontinuous switching plane along a
desired state trajectory, which is referred to as the
sliding surface. The primary objective for the SMC is to
maintain the states within sliding surface neighbourhood.
A switching gain is used to push the states towards the
surface when they try to move away. Once the state
values are on the surface, the states slide along the
surface towards the desired values [10]. Although the

switching effects bring robustness and stability to the
control process, it also introduces high-frequency switching
known as chattering [11]. Quite often a boundary layer is
introduced in an effort to smooth out the control signal [10].
Prior to the 1980s, VSC and SMC methods were only
considered in the continuous-time domain [12]. In 1985,
a discrete-time formulation of SMC was presented [13].
A stability condition was provided shortly afterwards
and is now typically used in the design of discrete
controllers [14], [15].

SMOs, which were developed in the 1980s [12], [16],
reduce the error with the help of a switching function
similar to VSC and SMC [17]. Observer gains are calculated
based on the errors between the measurements and
estimates [17]. Most SMOs apply a discontinuous signal
to the estimates in order to keep them bounded to an
area of the surface [12]. The motion consists of three
phases: reachability, injection, and sliding [12], [18]. The
reachability phase consists of forcing the estimates to the
sliding surface from some initial conditions, in a finite
period of time [12]. Once within a defined area of the
surface (called an existence subspace), both the injection
and sliding phases are present. The sliding phase forces the
estimated errors to slide along a hyperplane towards the
origin [12]. The injection phase consists of preventing
the estimate from leaving the existence subspace; keeping
it bounded within an area of the sliding surface [12].
According to [12], [16], and [19], the action of the injection
phase enables the observer to be robust enough to overcome
uncertainties, modelling errors, and nonlinearities present
in the system. A number of SMOs have been developed
based on these principles. The most notable observers were
introduced by Slotine et al. [9], [20], Walcott et al. [21], [22],
Edwards and Spurgeon [19], and later by both Tan and
Edwards [23]. SMOs have been applied to estimation
problems, and fault detection and isolation [12].

Another filter called the smooth VS filter (SVSF)
was presented in 2007, which was based on SM and
VS techniques [3], [12], [24]. The SVSF is formulated
as a predictor–corrector estimator similar to the KF.
However, it utilises a gain structure based on SM
techniques. The filter’s gain is calculated based on
the error in measurements at the prediction stage of
the current time (known as innovation), the error in
measurements at the update stage from the previous
time step, and a switching term [24]. Similar to SMOs,
the switching gain structure improves the stability and
robustness of the estimation process by bounding the
state estimates close to the true trajectory [25], [26]. The
SVSF presented in [24] did not contain a state error
covariance derivation, which is an important feature for
optimal estimation strategies (it is another performance
indicator). A state error covariance function was introduced
and expanded in [25], [27], and [28], which vastly improved
the number of useful applications for the SVSF [29]–
[31]. Other developments and improvements to the
SVSF were conducted in the literature, including fault
detection using chattering, higher-order implementations,
and tracking multiple targets [12], [32]–[35]. The SVSF
has demonstrated robust performance on a number of
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different estimation problems [4]. Most recently, a filter,
which is referred to as the sliding innovation filter (SIF),
was introduced in [36]–[39]. The SIF is based on similar
concepts to the SVSF but offers a simpler formulation with
improved results. An opportunity for improving the SVSF
involves the development of an adaptive formulation. The
ability of the SVSF to automatically modify its system
and/or measurement models based on different operating
modes offers significant room for improvement (e.g., in
terms of both accuracy and robustness).

In this paper, a new adaptive formulation of the SVSF
is presented and tested on an experimental setup. The
novel method integrates the static multiple models (SMMs)
estimator with the SVSF predictor–corrector estimation
strategy. The SMM consists of several possible operating
modes where several possible estimates are obtained. The
SMM then combines these estimates using some weights
based on the likelihood of each mode. This strategy may
be used for fault detection and diagnosis problems and has
demonstrated good accuracy and repeatability of results.
The performance of the proposed method is evaluated
using an electro-hydrostatic actuator (EHA) which was
built for experimentation. The results are compared with
the standard SVSF estimation method.

This paper is organised as follows. Section 2 sum-
marises the SVSF estimation process. Section 3 introduces
the SMM estimator and the proposed SMM-SVSF or
the adaptive SVSF algorithm. Section 4 describes the
experimental setup as well as the equations of motion
governing the EHA. Section 5 discusses the application
of the standard SVSF and adaptive SVSF to the EHA
system, followed by concluding remarks.

2. The Smooth Variable Structure Filter

The SVSF is a predictor–corrector estimation strategy that
offers solution with robustness and stability against dis-
turbances and uncertainties. The SVSF uses a smoothing
boundary layer with an upper bound that is defined based
on the level of noise and unmodeled dynamics [40], [41].
The SVSF is model-based and may be applied to both
linear or nonlinear systems and measurements [3], [12]. The
SVSF’s concepts are illustrated in Fig. 1.

As described earlier, the SVSF strategy is structured
similarly to the KF. However, it presents a novel way to
calculate its gain. As per (2.1) and (2.2), x̂k+1|k and Pk+1|k
are calculated.

x̂k+1|k = Ax̂k|k +Buk (2.1)

Pk+1|k = APk|kA
T +Qk (2.2)

Then, ẑk+1|k and ez,k+1|k are calculated as per (2.3)
and (2.4), respectively.

ẑk+1|k = Cx̂k+1|k (2.3)

ez,k+1|k = zk+1 − ẑk+1|k (2.4)

The gain used by the SVSF, Kk, is calculated with the
use of the boundary layer widths, ψ, as follows [3]:

Figure 1. SVS’s concepts with the existence subspace
boundary layer [3].

Kk+1 = C+
k diag

[(∣∣ezk+1|k

∣∣+ γ
∣∣ezk|k

∣∣) ◦ sat
(
ψ
−1
ezk+1|k

)]
diag

(
ezk+1|k

)−1
(2.5)

The saturation function is defined as follows:

sat
(
ψ
−1
ezk+1|k

)
=


1, ezi,k+1|k/ψi ≥ 1
ezi,k+1|k

ψi
, −1 <

ezi,k+1|k
ψi

< 1

−1, ezi,k+1|k/ψi ≤ −1

(2.6)

where ψ
−1

is defined by (2.7) for m number of
measurements [3]:

ψ
−1

=


1
ψ1

0 0

0
. . . 0

0 0 1
ψm

 (2.7)

The state vector and error covariance matrix are,
respectively, updated as per (2.8) and (2.9).

x̂k+1|k+1 = x̂k+1|k +Kk+1ez,k+1|k (2.8)

Pk+1|k+1 = (I −Kk+1C)Pk+1|k (I −Kk+1C)
T

+Kk+1Rk+1K
T
k+1 (2.9)

Finally, the updated measurement error, ez,k+1|k+1, is
found as per (2.10) and is used in the next iteration.

ez,k+1|k+1 = zk+1 − ẑk+1|k+1 (2.10)

The existence subspace, denoted by the dotted black
line shown in Fig. 1, refers to the level of uncertainty found
in the estimation process. It is typically present due to the
amount of noise and/or modelling uncertainties [3]. The
existence space, β, is described mainly from the innovation
signal [27], [34]. While the width is not precisely known,
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Figure 2. The proposed SMM-SVSF (or adaptive SVSF) flowchart.

designer knowledge may be used to define the upper bound.
When the smoothing boundary is defined larger than the
existence subspace, the estimated states are smoothed.
Likewise, if the smoothing term is set too small, chattering
(high-frequency switching) may occur.

3. A Novel Adaptive Formulation of the Smooth
Variable Structure Filter

The SMM algorithm assumes that the system behaves
according to a finite number of r models M1, M2, . . . ,Mr.
The SMM uses variable weights, µjk, calculated at time
k to represent each model M j . These weights represent
a probability of the system behaving according to a
corresponding operating mode (i.e., mathematical model).
These weights are used to combine the corresponding model
state estimates [42] which creates an overall estimate. The
weights are initially uniformly distributed, and subsequent
weights are calculated as follows:

µjk =
p
(
zk
∣∣M j

)
µjk−1∑r

i=1 p (zk|M i)µik−1
(3.1)

where p
(
zk
∣∣M j

)
is the likelihood value of measurement zk

based on M j and is defined as follows:

p
(
zk
∣∣M j

)
=

1√
2πσ2

j

exp
−
(
zk − ẑk|k−1

)2
2σ2

j

(3.2)

σ2
j = CjkP

j
k|k−1C

j
k

T
+
(
σ2
z

)j
(3.3)

where σ2
j refers to the variance of model M j based on the

predicted measurement ẑk|k−1 for modelM j [42]. Note that
the parameter definitions may also be found in the Table
of Nomenclature. Each model has its own likelihood value
calculated from the filtering strategy (whether it is from a
KF, SVSF, or another type). The adaptive estimates are
calculated using the weighted sum produced by the system
models, as per (3.4).

x̂k|k =

r∑
j=1

µjkx̂
j
k|k (3.4)

The adaptive covariance is calculated in a similar
fashion, as shown in (3.5).

Pk|k =

r∑
j=1

µjk

[
P jk|k +

(
x̂jk|k − x̂k|k

)(
x̂jk|k − x̂k|k

)T]
(3.5)

The proposed SMM-SVSF (or adaptive SVSF) uses
the model weights from the SMMs estimator to generate
a weighted prediction. The weighted state predictions
are used to calculate the SVSF gain, which is used
to generate an updated state estimate and state error
covariance. As the algorithm uses a weighted combination
of system modes, the weights could be used to describe
the mixing of different system modes. Figure 2 depicts the
algorithm flowchart and Table 1 shows the corresponding
pseudocode. Note that the initial mode weights can be
defined by the user, provided that the sum of each value is
1 (so the total probability is 100%).

After the SVSF boundary layer vector and convergence
rate have been set and model weights have been initialised,
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Table 1
Pseudocode for the SMM-SVSF Algorithm

1: For models (M j), j = 1 to r

x̂k+1|k, j ← (Aj , u)

2: For models (M j), j = 1 to r

σ ← (Q, R, Pk|k)

p ← (x̂k+1|k, j , z, σ)

3: µk+1 ← (x̂k+1|k,j , µk)

4a: x̂k+1|k ← (x̂k+1|k, j , µk+1)

4b: For operating modes j = 1 to r

Pk+1|k,j ← (Aj , x̂k+1|k)

5: Pk+1|k ← (Pk+1|k,j , µk+1)

6: Kk+1 ← (C, γ, saturation)

7a: x̂k+1|k+1 ← (x̂k+1|k,, z, C, Kk+1)

7b: Pk+1|k+1 ← (Pk+1|k, C, Kk+1, R)

a predicted state estimate for each system model is made.
The standard deviation is calculated using three different
covariance matrices: the state error, the system noise,
and the measurement noise covariance matrices. Next, the
updated estimates, standard deviations, and measurements
are used to calculate the model probabilities. These
probabilities are then used to update the model weights,
which then are used to generate a weighted predicted
state estimate and error covariance. This information is fed
through the SVSF update stage as described in Section 2
using (2.8)–(2.10).

4. Experimental Setup

EHAs are a type of hydraulic and electrical actuator
comprised of a linear or rotary actuator, a hydraulic
circuit, and a bidirectional pump [43]. EHAs are used in
automotive and aerospace industry due to their large force-
to-weight ratios and their reliability. They are also used in
various manufacturing applications, such as metal forming,
where control of the outlet pressure is required [44].
Electromechanical systems often function under different
operating modes. In the case of the EHAs, faults, such
as internal leakage and increased friction, may be present.
Internal leakage is caused by the wearing of the piston seal,
which affects the overall actuation performance [45]. If the
leakage remains undetected, then it cannot be repaired,
which can deteriorate lifetime performance and increase
maintenance costs [45]. As detection of internal leakage
in EHAs through disassembly of the cylinder and piston
is costly, adaptive estimation strategies can be used to
improve the overall estimation process in the presence of
multiple operating modes.

The EHA model used in this paper was designed
and manufactured at the Centre for Mechatronics and
Hybrid Technology at McMaster University shown in

Fig. 3 [43]. The EHA used in this study is composed
of several components, including two linear actuators,
a bi-directional external gear pump, a variable-speed
servomotor, an accumulator, a pressure relief valve, and
safety circuits [46]. A variable-speed brushless DC electric
motor drives the pump and forces hydraulic oil into the
cylinder and modifies the actuation performance by varying
the fluid flow rate. An accumulator is used to prevent
cavitation and collect leakages from the gear pump. The
EHA is controlled by modifying the input voltage to the
motor, which consequently changes the direction and speed
of the pump. Controlling the fluid flow rate in the outer
circuit adjusts the position of the piston, which could be
used for aerospace applications such as changing flight
surfaces.

The EHA was modelled using four states: the actuator
position x1 = x, velocity x2 = ẋ, acceleration x3 = ẍ,
and differential pressure across the actuator x4 = P1 − P2.
The physical modelling approach was used to obtain the
nonlinear state-space equations in discrete time described
by [3], [47]:

x1,k+1 = x1,k + Tx2,k (4.1)

x2,k+1 = x2,k + Tx3,k (4.2)

x3,k+1 = 1 −
[
T
a2V0 +MβeL

MV0

]
x3,k

−T
(
AE

2 + a2L
)
βe

MV0
x2,k . . .

−T
2a1V0x2,kx3,k + βeL

(
a1x2,k

2 + a3
)

MV0
sgn

(
x2,k

)
+T

AEβe

MV0
u (4.3)

x4,k+1 =
a2

AE
x2,k +

(
a1x2,k

2 + a3
)

AE
sgn

(
x2,k

)
+

M

AE
x3,k (4.4)

The system input is defined as follows:

u = Dpωp − sgn (P1 − P2)QL0 (4.5)

where ωp is the pump speed. Table 2 summarises and
defines the numeric values of the parameters in (4.1)–(4.5).

The friction was modelled using a quadratic function
based on the actuator velocity. The friction coefficients were
obtained by performing experiments ranging from 15.6 to
109 radians per second with each data set containing four
trials for repeatability [43].

5. Results and Discussion

The results of applying the proposed strategy on the EHA
are discussed in this section. The state estimates were
initialised to zero and the covariance matrices for system
and measurement noises were defined, respectively, as Q =
10−9I4x4 and R = 10−6I4x4, where I is an identity matrix.
Furthermore, the state error covariance matrix P was
initialised as 10Q.

Leakage faults were introduced to investigate the
effects of parametric uncertainties in the system. The
purpose of this study was to demonstrate the efficiency
of the proposed strategy compared to the standard SVSF.
The SMM-SVSF algorithm demonstrates robustness in the
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Figure 3. Prototype of the EHA used to collect experimental data [43].

Table 2
The EHA Parameters, Definitions, and Values Used in the

Experiment

Parameter

Parameter Description Values

AE Piston area (m2) 1.52 × 10−3

Dp Pump displacement (m3/rad ) 5.57 × 10−7

L Leakage coefficient (m3/(s×Pa)) 4.78 × 10−12

M Load mass (kg) 7.376 kg

QL0 Flow rate offset (m3/s) 2.41 × 10−6

V0 Initial cylinder volume (m3) 1.08 × 10−3

βe Effective bulk modulus (Pa) 2.07 × 108

a1 Friction coefficient 6.589 × 104

a2 Friction coefficient 2.144 × 103

a3 Friction coefficient 436

presence of multiple operating modes. Multiple system
modes are introduced to the system in the form of leakage
faults. In order to obtain the coefficients of the leakage
values, the EHA was operated with a constant pump speed
of 94.25 radians per second under a series of differential
pressures. The differential pressure was modified using
a throttling valve in the hydraulic system. To ensure
repeatability, five sets of measurements were made. A linear
regression was performed on each data set, and the slope
and intercept were used to define L and QL0, respectively.
The leakage coefficients and flow rate offsets used for this
study are presented in Table 3.

A minor leakage is introduced to the system at t =
3 sec and a major leakage is introduced at t = 6 sec. The
effect on the input flow rate can be seen in Fig. 4.

Table 3
Leakage Coefficient Values and Flow Rate Offsets for

Varying Operating Conditions

Leakage, Flow Rate Offset,

Condition L (m3/(s×Pa)) QL0 (m3/s)

Normal 4.78× 10−12 2.41× 10−6

Minor leakage 2.52× 10−11 1.38× 10−5

Major leakage 6.01× 10−11 1.47× 10−5

Figure 4. Input flow rate due to internal leakage faults.

Once the EHA was modelled at all these operations
and they were verified experimentally, we used these
mathematical models and values in a MATLAB Simulation
to compare the performance between the proposed
algorithm to the traditional one. The benefits of using the
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Figure 5. Position estimates with leakage faults: (a) 9-sec simulation and (b) zoomed in at 8 sec (major leakage).

Figure 6. (a) Velocity estimates for EHA with leakage faults and (b) acceleration estimates with leakage faults.

simulation can be summarised in two points; the values
at a certain point are known, i.e., the true state, and
the prototype will not be damaged due to the fault when
introduced. The results of the simulation are shown in
Figs. 5–8 and Table 4.

Figure 5 shows the position estimates, while the
velocity and acceleration estimates are shown in Fig. 6(a)
and 6(b), respectively. The SMM-SVSF performs slightly
better than the classical SVSF when the major leakage fault
is introduced as seen in Fig. 5(a) and (b). The SVSF filter
shows a significant deviation from the true velocity when
the minor leakage fault is introduced at 3 sec, as shown in
Fig. 6(a). The error becomes worse when the major leakage
is introduced at 6 sec as shown in Fig. 6(b). This error
is caused by the modelling uncertainty of the acceleration
state, particularly due to the flow rate offset of the input.
The greatest improvement can be seen in the velocity and
acceleration estimates. Overall, the SMM-SVSF greatly
outperforms the classical SVSF in the presence of modelling
uncertainties such as leakage faults.

The SMM-SVSF’s ability to determine system modes
can be seen in Fig. 7, which shows the weights of each
system mode used to calculate the estimate. Throughout

Figure 7. Model probability weights.

the entire experiment, the SMM-SVSF filter calculates at
least an 80% probability of the correct operating mode at
every stage of operation. The figure shows clear transitions
from normal operation, to minor leakage, to major leakage
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Figure 8. The differences between SVSF and SMM-SVSF in terms of (a) IS and (b) ES.

Table 4
RMSE Results for SVSF and SMM-SVSF for Scenario With Leakage Faults

Filter Position Velocity Acceleration Differential

(m) (m/s) Acceleration Pressure (Pa)

SVSF 0.0003101 0.0091966 0.002810 0.001002

SMM-SVSF 0.0001828 0.0000799 0.000712 0.001002

at 3 and 6 sec, respectively. The innovation squared (IS)
and error squared (ES) are calculated and shown in Fig. 8.
These two compare the a priori and the a posteriori
squared errors between the two algorithms, respectively.
Moreover, they show the existence subspaces around the
estimates in both prediction and update steps. From the
figure, it was easily obtained that the SMM-SVSF is more
stable compared to the classical SVSF, and estimates are
smoother with no chattering in SMM-SVSF compared
to SVSF. The error of the classical SVSF in both steps
increases due to introducing the faults, and it spikes when
the actuator changes direction. In addition, the RMSE
values in Table 4 show that the SMM-SVSF significantly
reduces the errors in estimating the position, velocity, and
acceleration.

6. Conclusion

This paper introduced the combination of the SVSF and
SMM estimation strategies to create an adaptive filtering
method, SMM-SVSF, that can be used in fault and
diagnosis applications. Furthermore, a brief background
was provided on the development of estimation theory, up
to and including the SIF. The SVSF was also included. The
SMM-SVSF was tested on an EHA. The filter performed
well for this particular EHA model due to two main
factors: the system parameters of the different leakage
modes vary significantly enough for mode differentiation
using the SMM method, and the system and measurement
noise covariances are well known. This paper demonstrates
that the addition of SMM to the SVSF strategy improves

the overall estimation process for a system with multiple
operating modes, and thereby creates an adaptive SVSF.
This can be observed from the results, where the root
mean-squared errors were reduced by 41%, 99%, and
75% for the position, velocity, and acceleration estimated
states when the SMM-SVSF is applied rather than SVSF.
Potential future work will incorporate additional operating
modes, such as friction faults as well as the mixing of
several different operating modes.
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