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Abstract

Machine learning is playing an increasingly important role in smart

substation systems. Object detection algorithms are commonly used

in smart substations for procedures, such as helmet detection and

personnel clothing inspection. However, object detection algorithms

are inadequate for solving complex smart substation scenarios

because of their poor generalisation ability. Thus, we introduce

an intelligent fusion algorithm named YYSF-4 that has good

generalisation ability. YYSF-4 comprises You Only Look Once

(YOLO) V1, YOLO V3, a single-shot multi-box detector, and fast-

oriented text spotting, and is suitable for use in smart substations.

We use real images from substations as a dataset to verify the

effectiveness of the YYSF-4 in four scenarios: helmet detection

and recognition, personnel clothing detection and identification,

personnel detection and identification, and bill detection and

recognition. The experimental results show that the mean average

precision (mAP) of YYSF-4 in the above four scenarios is higher

than the mAPs of other baseline algorithms.
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1. Introduction

The safety of substations has always been one of the
most important issues in power systems. For example,
existing video surveillance systems of substations cannot
function as intrusion alarm [1], which means that the timely
discovery of unauthorised intrusions into substations is
impossible. In addition, under the current transportation
inspection mode, the information acquisition method is
the traditionally used and the single source of information.
Equipment status perception is based mainly on power
outage maintenance and offline testing. Thus, advanced
methods, such as intelligence and data utilisation, are
rarely employed; substation operations and maintenance
continue to rely largely on manual operation.
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The use of multi-objective optimisation methods
in constructing a new integrated energy system is a
current focus of the research [2], [3]. The operation and
inspection of substations face enormous challenges given
the increasing number of substations. Presently, however,
there remains a large difference between traditional
and smart substations [4]. Although many intelligent
algorithms exist for safety helmet detection [5], personnel
dress code detection [6], and moving object detection
[7] in substations, they are only adequate for providing
early warning of specific types of events, and their
generalizability to other scenarios is very poor. The need
for smart substations is growing as the role of substations
in the electric power system is increasingly crucial. One of
the main ways to realise smart substations is to develop
smart algorithms to provide real-time and all-round early
warning. In this vein, we introduce herein an intelligent
fusion algorithm, YYSF-4, for use in power systems.
YYSF-4 is an improvement of four typical algorithms
and achieves outstanding performance, as is verified
in scenarios involving the detection of safety helmets,
personnel clothing, personnel, and bills.

2. Related Research

In terms of physical security at smart substations, Huang
et al. [5] improved the You Only Look Once (YOLO) V3
algorithm and applied it to helmet-wearing detection.
Their results showed that the algorithm improved helmet
detection speed and accuracy. Zhang et al. [6] developed
a personnel dress code detection algorithm based on a
cascade convolutional neural network. They evaluated this
algorithm on private datasets, which revealed that its mean
average precision (mAP) was 56.9%. In addition, Wang
et al. [7] detected moving objects with a Gaussian-model
foreground extraction and image dithering approach, which
they used to identify dynamic objects in video surveillance
footage from smart substations.

In terms of information security of smart substations,
Li et al. [8] investigated the problem of zero data-frame
loss when communication systems of smart substations
fail. Focusing on the reliability of smart substation
communication networks, the authors proposed a system
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model by combining a parallel redundancy protocol with
high-availability seamless redundancy network protocols.
The feasibility of the method was verified, and the
results showed that it improved the reliability of
the communication network, providing a reference for
developing smart substations. However, currently available
automatic information-monitoring acceptance systems of
smart substations fail to realise the closed-loop real-
time transmission of an entire signal. Chen et al. [9]
developed a set of closed-loop acceptance systems for smart
substation information monitoring based on IEC61850 and
multi-machine multi-network parallel verification theory.
They also developed a high-efficiency substation data-
monitoring method based on all-phase spectrum correction
technology. The theory and method were then verified
in an engineering project of a provincial power company.
Zhang [10] studied the problems of partial or complete
relay protection malfunction, which are caused by poor
secondary maintenance of the equipment of a smart
substation. To realise safety measures for error prevention,
online monitoring, and false alarms, the characteristics of
the safety measures for the secondary maintenance of the
smart substation were first analysed. Subsequently, the key
security technologies for preventing errors were expounded
in terms of visualisations, anti-error mechanisms, simu-
lation rehearsals, remote control operation, and online
monitoring. It was then demonstrated that the application
of these technologies enhances safety and security.

Although the aforementioned methods effectively
improve security in smart substations, the generalizability
of the best method is poor. Moreover, each algorithm is
only applicable to a limited number of scenarios. This
means it is vital to develop a security protection algorithm
that is robust and has high generalizability.

3. YYSF-4

YYSF-4 is an improvement on and fusion of four
algorithms, and its structure is shown in Fig. 1. The design
principle of YYSF-4, the design of the loss function, and
the selection of the corresponding parameters are detailed
below.

3.1 Design Principle

The design principle of YYSF-4 comprises five main parts.
First, the original image is directly divided into small
squares that do not overlap, and feature maps of specified
sizes are produced through convolution. Second, multiple
scales are used to detect targets of different sizes: the
shallow feature map contains the location information,
and the deep feature map contains extensive semantic
information. Third, convolutional neural networks are used
to extract image features. The location and category of
the candidate region are also predicted to improve the
generalisation ability of the model. Fourth, the positioning
and detection in the forward calculation of the network
are encapsulated to improve the calculation speed. Fifth,
image text detection and recognition are used for joint

Figure 1. Algorithm fusion of YYSF-4.

training, and both tasks share the convolutional feature
layer to save computation time.

Figure 1 shows the structure of YYSF-4, which
comprises four effective components: data preparation,
algorithm fusion, typical scenario application, and result
output. The data preparation component comprises
helmets, personnel attire, face data, and work tickets.
Two types of helmets are used: red helmets, representing
normal staff, and white helmets, representing visitors. The
algorithm fusion process is an integration of YOLOV1,
YOLOV3, a single-shot multi-box detector (SSD), and
fast-oriented text spotting (FOTS). When identifying the
job site, the targets are fed to the algorithms in different
sequences through a set of instructions, which allows
for individual identification. Then, the optimal result is
extracted using a set of instructions, which yields the
optimal recognition result. YYSF-4 first performs feature
processing (such as convolution and pooling) of the input
data, and then, after repeated training, it is applied to four
different scenarios for verification.

3.2 Loss Function Selection

The goal of YYSF-4 is to optimise the loss function. Four
loss functions are selected for this model. The first loss
function is shown in (1). Here, Lcoord is the coordinate
error, Lobj is the IOU error, and Lclasses is the classification
error.

LossN1 = Lcoord + Lobj + Lclasses (1)

Lcoord can be expressed as :

Lcoord = λcoord

s2∑
i=0

B∑
j=0
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[
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]

+λcoord
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j=0

1objij

[(√
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√
ŵi

)2

+

(√
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√
ĥi

)2
]
, (2)
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where λcoord is the hyperparameter, (x, y, w, h) are

the position coordinates, and 1objij denotes that the j -th
bounding box predictor in cell i is “responsible” for that
prediction.

Lobj can be expressed as :

Lobj =

s2∑
i=0

B∑
j=0

1objij (ci − ĉi)2
+

+λnoobj

s2∑
i=0

B∑
j=0

1noobjj (ci − ĉi)2
, (3)

where λnoobj is the hyperparameter, and c is the confidence
of the prediction box.

Lclasses can be expressed as :

Lclasses =

s2∑
i=0

1obji

∑
c∈ classes

(pi(c)− p̂i(c))2
, (4)

where 1obji denotes whether an object appears in cell i, and
pi(.) is the probability of a particular class.

The second loss function is shown in (5), where λ is
the weight constant, and its function is to control the ratio
between the detection frame loss, obj confidence loss, and
noobj confidence loss.

lossN1 = λbox
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2
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)2]

+λbox

N1×N1∑
i=0

3∑
j=0

1objij

[
(tw − t′w)

2
+ (th − t′h)

2
]
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1objij log (cij )

−λnoobj
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i=0
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j=0

1noobjij log (1− cij )

−λclass

N1×N1∑
i=0

3∑
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[
p′ij (c) log (pij (c))
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)
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]
(5)

The third loss function is shown in (6), where and
represent the score loss function and position loss function,
respectively, and N represents the number of grid points.
The solutions of and are shown in (7) and (8).

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc (x, l, g)) (6)

Lloc(x, l, g) =

N∑
i∈ Pos

∑
m∈{x,c,w,h}

xkij smoothL1

(
lmi − ĝmj

)
(7)

Lconf (x, c) = −
N∑

i∈ Pos

xpij log (ĉpi )−
∑

i∈ Neg

log
(
ĉ0i
)

−
∑

i∈ Neg

log
(
ĉ0i
)
, (8)

where

ĉpi =
exp (cpi )∑
p exp (cpi )

. (9)

The fourth loss function is shown in (10).

L = Ldetect + λrecogLrecog (10)

The detection branch loss function is:

Ldetect = Lcls + λregLreg, (11)

where

Lcls =
1

|Ω|
∑
x∈Ω

H (px, p
∗
x) ,

=
1

|Ω|
∑
x∈Ω

(−p∗x log px − (1− p∗x) log (1− px)) ; (12)

Lreg =
1

|Ω|
∑
x∈Ω

IoU (Rx, R
∗
x) + λθ (1− cos (θx, θ

∗
x)) . (13)

The recognition branch loss function is as follows:

Lrecog = − 1

N

N∑
n=1

log p (y∗n | x) , (14)

p (y∗ | x) =
∑

π∈B−1(y∗)

p(π | x). (15)

3.3 Parameter Adjustment

The first parameter-selection step of the improved
YOLO V1 is the adjustment of the input image to 448
× 448 and the running of a single convolutional network
on the image. The entire network has 24 convolutional
layers and two fully connected layers. The output layer
uses a linear function as the activation function, and the
activation functions of the other layer are leaky rectified
linear units. In the improved YOLO V3, the first feature
map is downsampled 32 times, the second feature map
is downsampled 16 times, and the third feature map is
downsampled 8 times. The output dimension of the feature
map is N × N × [3 × (4 + 1 + 8)], where N × N
is the number of grid points of the output feature map,
giving a total of three anchor boxes. In the improved
SSD algorithm, six layers are extracted from the feature
map generated by the convolutional neural network. In the
improved FOTS algorithm, the shared convolution layer
adopts a convolution sharing method similar to U-Net,
which merges the bottom and high layers of the feature
map.

4. Experiments

The experimental scenarios are ticket detection and
recognition, helmet detection and recognition, personnel
dress detection and recognition, and personnel detection
and recognition. FOTS, YOLO V1, SSD, and YOLO V3
are used for anti-violation recognition.
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Figure 2. Basis of data filtering.

4.1 Data Processing

4.1.1 Data Acquisition

The experimental data comprise three parts: positive and
negative samples of substation staff wearing safety helmets,
positive and negative samples of substation staff wearing
overalls, and samples of substation staff during normal
operations and maintenance. The original data requires
preprocessing as it contains numerous bad data [11]. The
preprocessing conditions are as follows. For the safety
helmet samples, the colour of the safety helmets must be
obvious and free from obstruction and alteration. The total
occurrence of both positive and negative helmet samples
in the scene must be more than 10, and the total duration
of an occurrence must exceed 3,600 s. For personnel dress
samples, the samples must be clearly identifiable, and the
dress code must be intact, unobstructed, and unaltered.
In addition, people in the scene must enter and exit the
safe area more than 50 times, and the total duration of an
occurrence should exceed 360 s. Figure 2 shows the basic
conditions for data screening.

4.1.2 Data Preprocessing

The first data preprocessing step is data filtration. Through
careful comparison, we screen the video data of 50 scene
cameras in a certain substation, which were obtained from
May 2020 to July 2020. In the later stage, through demand
screening, 30 scenes are excluded, and the remaining scenes
meet the corresponding video production standards for
detection and identification requirements. The second data
preprocessing step is video frame cutting: different data
intervals are selected based on the specific video data for
each camera, and Open CV is then used to cut the video
frames. If the video contains a flow of many people, the
cutting-frame time interval is short, to ensure that enough
image samples are obtained; if the video contains a flow
of few people, the cutting-frame time interval is long, to
ensure that there is a large difference between the images.
The third step is data cleaning. As the images cut from
the video frame are strongly correlated in time, the images
that have similar timestamps and are minimally different
in terms of the information they contain are removed, to

Figure 3. Data distribution before and after data prepro-
cessing.

Table 1
Hyperparameter Values of Initial Network Parameters

Hyperparameter Value

Convolution kernel size 3 × 3

Convolution operation step size 1

Pool size 2

Pooling step 2

Batch size 8

Image size 224 × 224

Initial learning rate 0.0001

Do bn processing? Yes

Weight-decay regular term 0.0005

Number of image channels 3

avoid model overfitting during training. The fourth step is
image labelling, which is performed with Label Image, such
that the category and location information of the target
are labelled. The final step is sample selection, which is
conducted following the sample classification index; 70% of
the sample is used for model training and 30% is used for
model verification. Figure 3 shows the data distribution.

4.2 Experimental Design

4.2.1 Safety Helmet Detection and Recognition

In this experiment, YYSF-4 uses the non-maximum
suppression method and determines the category of
each box. Ninety-eight boxes are initially processed by
returning values less than the confidence threshold to 0.
Subsequently, we determine the category of each box. The
detection result is output when the confidence value is
not 0. GoogLeNet is used as the backbone network for
model training. The initial model parameters are shown in
Table 1.
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Figure 4. Comparison of YYSF-4 with other algorithms in
helmet detection scenarios: (a) mAP and (b) fps.

Table 2
Initial Network Parameters

Hyperparameter Value

Number of iterations 300

Batch size 10

Image size 512 × 512

Learning rate 0.0005

Multi-scale training True

Training method Atrous

We use accuracy, frames per second (fps), and mAP
as model evaluation indicators. Figure 4(a) shows the
mAP profile of YYSF-4, which reaches 65%. This mAP of
YYSF-4 is 2.7%, 1.6%, 1.9%, 1.6%, and 2.1% higher than
the mAPs of the Cheng Method, YOLO V1 [12], improved
YOLO V1 [12], local response normalisation (LRN) [12],
and No-LRN [12], respectively. The mAPs of YOLO V1
and LRN are both 63.4%, which is the highest after
that of YYSF-4. These mAPs are the same because both
algorithms share a similar foundation. Figure 4(b) shows
that LRN achieves the fastest processing rate, whereas the
processing rate of YYSF-4 is 33 fps, ranking it fifth out of
the six algorithms tested. However, in actual application
scenarios, mAP is more important than the processing rate.
Additionally, we test the F1 value of YYSF-4 and obtain
a value of 65.42%, which is higher than that of the other
algorithms. Therefore, the above indicators of YYSF-4
show that it is the best choice. These results demonstrate
that applying YYSF-4 in substations can assist personnel
in decision making.

4.2.2 Personnel Clothing Detection and Identification

The initial model parameters are shown in Table 2.
ResNet-50 is used as the model for training the

backbone network for the model application. Figure 5(a)
shows that the mAPs of the seven algorithms fluctuate
around 70% in personnel clothing detection, with the

Figure 5. Comparison of YYSF-4 with other algorithms in
personnel clothing inspection scenarios: (a) mAP and (b)
processing rate.

Table 3
Initial Network Parameters

Hyperparameter Value

Number of iterations 200

Batch size 8

Image size 608 × 608

Learning rate 0.001

Multi-scale training True

Training method Adam

mAP of YYSF-4 being the highest (75%). The mAPs
of the W-method [13], the C-method [14], the rainbow
SSD (RSSD) [15], and the H-method [16] are all greater
than 70%. The mAPs of the deconvolutional single-shot
detector (DSSD) [17] and the feature fusion SSD (FSSD)
[18] are less than 70%, with the mAP of the latter being
the lowest of the seven algorithms. Figure 5(b) shows
the processing rates for each of the seven algorithms;
those of the C-method and the RSSD are equal-fastest
(56 fps) and that of YYSF-4 ranks second (55 fps). The
DSSD and W-method have the lowest processing rates
(54 and 53 fps, respectively). Importantly, the processing
rates of the seven algorithms are similar, differing by only
approximately ±2 fps.

4.2.3 Personnel Detection and Identification

Table 3 shows the initial network parameters of personnel
detection and identification.

On this basis, we verify and tune the model. At the
same time, multiple indicators, such as accuracy, processing
speed, and mAP, are used as evaluation indicators for
model effect evaluation.

Figure 6(a) shows the five algorithms that are used
to simulate the personnel detection scene. The mAP of
YYSF-4 is 20.48%, which is 9.31%, 24.76%, and 18.05%
higher than the mAPs of the other four algorithms,
respectively. Faster R-CNN [19] has the second-best mAP,
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Figure 6. Comparison of YYSF-4 with other algorithms in
personnel detection and identification scenarios: (a) mAP
value and (b) fps value.

Table 4
Text-recognition Branch Settings

Type KernelT Out channels

[size, sride]

conv bn relu [3,1] 64

conv bn relu [3,1] 64

height-max-pool [(2,1),(2,1)] 64

conv bn relu [3,1] 128

conv bn relu [3,1] 128

height-max-pool [(2,1),(2,1)] 128

conv bn relu [3,1] 256

conv bn relu [3,1] 256

height-max-pool [(2,1),(2,1)] 256

bi-directionalIstm / 256

fully-connected / |S|

which is approximately 10% less than that of YYSF-4.
YOLO has the lowest mAP, which is 24.76% less than that
of YYSF-4. The order of the other algorithms, in terms of
descending mAPs, is YOLO V2, Fast R-CNN, and YOLO.
Figure 6(b) shows that the fastest processing rate is that
of YOLO V2 (90.36 fps), while the second fastest is that of
YOLO (∼60 fps), and the third fastest is that of YYSF-4
(35 fps). The above data show that the processing rates
and mAPs of the algorithms show different trends: YYSF-4
is the best choice in terms of mAP, whereas its processing
speed was in the middle range.

4.2.4 Bill Detection and Recognition

Table 4 shows the text recognition branch settings of
YYSF-4 in the experiment. Figure 7 shows the P and F1
values of the test results for YYSF-4 in comparison with
those of SegLink [20] and the rotation region proposal

Figure 7. Comparison of YYSF-4 with other algorithms in
bill detection and recognition scenarios: (a) P value and
(b) F1 value.

network (RRPN) [20]. Figure 7(a) demonstrates that the
P value of YYSF-4 is the best (P = 80.95%), as it is
7.85% and 7.72% higher than those of SegLink and the
RRPN, respectively. SegLink and the RRPN have similar
P values, differing by only 0.03%. Figure 7(b) shows that
the F1 value of the RRPN is the highest, followed by that
of SegLink and then YYSF-4. However, the best choice is
YYSF-4 according to the crucial indicators.

5. Conclusion

In this study, we develop an intelligent fusion algorithm,
YYSF-4, for use in smart substation systems, by improving
four typical algorithms. YYSF-4 is verified in four
scenarios and achieves outstanding performance. In a
helmet detection experiment, the mAP of YYSF-4 is 2.7%,
1.6%, 1.9%, 1.6%, and 2.1% higher than that of the
Cheng-Method, YOLO V1, improved YOLO V1, LRN,
and No-LRN, respectively. In the personnel dress detection
experiment, the mAP of YYSF-4 is the highest (75%). In
the personnel detection experiment, the mAP of YYSF-4
is 20.48%, 9.31%, 24.76%, and 18.05% higher than that of
YOLO V2, Fast R-CNN, and YOLO, respectively. In the
bill detection experiment, the P value of YYSF-4 is the
best (80.95%), as it is 7.85% and 7.72% higher than that
of the other algorithms, respectively.
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