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Abstract

X-ray fluorescence (XRF) technology is a widely used method for

rapid detection of heavy metals in soil. It is important to establish

accurate models of the XRF spectrometer. Firstly, the influence of

sample particle size on the detection results was investigated, and

the 100 mesh was the most suitable particle size. All spectra were

pre-processed before modelling using the Savitzky–Golay smoothing

with seven points and the wavelet transform method with Coif 3

wavelet base at the ninth level for noise deduction and baseline

correction. The error back-propagation artificial neural network

(BP-ANN) learning algorithm optimized by Levenberg–Marquart

(LM) algorithm was selected to establish soil heavy metal models.

The results indicated that the modelling results were sufficiently

accurate. The BP-ANN method optimized with LM algorithm was

applied in the XRF research field for the first time, which provides

some technical support for the establishment of rapid detection

models of heavy metals in soil.
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1. Introduction

Heavy metals are particularly prominent among soil in-
organic pollutants, mainly because heavy metals cannot
be decomposed by soil micro-organisms and are easy to
accumulate [1], [2]. They can be converted into more
toxic methyl compounds, and some even accumulate in
the human body in harmful concentrations through the
food chain, seriously endangering human health [3]–[5].
Therefore, the detection of heavy metals in farmland soil,
especially rapid detection, is particularly important. In
this study, we will focus on some heavy metals that have
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caused widespread concern about soil toxicity, including
As, Cr, Cu, Pb and Zn (As is considered a metalloid).

X-ray fluorescence (XRF) analysis is widely used in
heavy metal detection in soil because it is non-destructive,
simple to operate, low cost and fast detection [6], [7].
XRF analysis can be used to identify specific elements in
substances and quantify them at the same time. It can
determine the specific element according to the emission
wavelength and energy of the X-ray, and determine the
content of this element by measuring the density of the
corresponding ray [8], [9]. Many studies focused on the ap-
plication of portable XRF spectrometer to detect heavy
metals in soil [10]–[20]. Few researches have discussed XRF
spectral data processing, analysis and modelling. The rea-
son may be that most users of XRF spectrometer do not
have the ability to manufacture the instrument, and it is a
rather complicated work to study the modelling method, so
most studies only pay attention to the application of XRF
spectrometer. In this work, the error back-propagation
artificial neural network (BP-ANN) learning algorithm op-
timized by Levenberg–Marquart (LM) algorithm was used
to establish accurate XRF quantitative detection models
of soil heavy metals.

2. Materials and Methods

2.1 Collection of Soil Samples, Apparatus and
Detection Conditions

The soil samples were collected from 0 to 20 cm surface
soil in various fields and mining areas. Before detection,
all samples were simply processed indoors, including air-
dried, ground and sieved. Non-metallic tools were used
throughout the process to prevent the introduction of
metals.

All detections were performed with a portable XRF
spectrometer (NX-100S, NCS Testing Technology Co.,
Beijing, China) fitted with a W anode X-ray tube, Cu filter
and silicon drift detector. The apparatus was operated at
a voltage of 38 kV, current of 120 µA and detection time of
240 s. An ethylene sample cup (D×H: 25 mm × 40 mm,
NCS Testing Technology Co., Beijing, China) fixed with a
Mylar film (Premier Lab Supply Co., Woburn, MA, USA;
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special film for X-ray analysis, thickness: 6 µm) was used
to place the samples. Each sample was detected seven
times, and the average spectrum was calculated for sub-
sequent analysis. Corresponding chemical values of heavy
metals in all samples were detected by national standard
methods, and a national standard soil sample was added
for quality control.

2.2 Sample Detection Conditions

The state of the sample has a certain impact on the
detection results. When soil heavy metals are detected, the
most influential factors include water content and particle
size. In this study, the soil samples were air-dried indoor
to keep the water content lower than 5%. To determine the
suitable particle size, some ground and sieved samples were
detected after passing through 10 mesh, 18 mesh, 40 mesh,
60 mesh, 80 mesh, 100 mesh and 120 mesh screen.

2.3 Pre-processing Methods of the X-ray Fluores-
cence Spectra

The XRF spectra contain both useful chemical informa-
tion and interference information such as background noise
and irrelevant information. These interference factors have
great influence on the extraction of target spectral in-
formation [21]. Therefore, it is necessary to pre-process
the spectra to establish accurate quantitative detection
models, and improve the robustness and prediction accu-
racy of the model.

Savitzky–Golay (SG) smoothing is a spectral pre-
processing method that can effectively eliminate noise such
as baseline drift and tilt [22], [23]. The parameters of SG
include derivative order, polynomial order and smoothing
point, and the number of smoothing point is an important
parameter. Too few smoothing points can easily generate
new calculation errors, which will reduce the accuracy of
the model. Too many smoothing points will make the
spectral data lost sample information and reduce the ac-
curacy of the model. Therefore, an accurate quantitative
detection model can be established by determining the ap-
propriate number of smoothing points [24]–[26]. Wavelet
transform (WT) is a new branch of mathematics, it is
the perfect combination of functional, Fourier analysis,
harmonic analysis and numerical analysis [27], [28]. In
the application field, especially in signal processing, image
processing, speech processing and many non-linear science
fields, it is considered to be another effective time-frequency
analysis method after Fourier analysis [29]. Compared
with the Fourier transform, the WT is a local transform
in the time and frequency domains, which can effectively
extract information from the signal, and perform multi-
scale analysis on the function or signal through operation
functions such as scaling and translation[30]–[32].

2.4 Establishment of QuantitativeDetectionModel
for Heavy Metals in Soil

The accuracy of the quantitative detection models will
be affected by different modelling methods. ANN is a

common method for analysing metrology problems. It
is usually used to solve complex problems, such as some
uncertain non-linear relationship problems [33]. The
method has been widely used in many fields because the es-
tablished model has high accuracy, strong anti-interference,
and strong classification and prediction ability. The error
BP-ANN algorithm is the most widely used learning al-
gorithm in the ANN model. BP-ANN is a supervised
learning algorithm, which is mainly composed of forward
propagation of information and backward propagation of
error [34]. The learning process is a process of repeated al-
ternation. The gradient adjustment error is used to change
the weights and thresholds of the neural network until the
network convergence is reached [35]–[37].

3. Results and Discussion

3.1 Particle Size of Detected Samples

Few attentions had been paid to the effect of sample
size on the detection results in XRF analysis. In this
study, samples with different particle size were detected
to determine a suitable particle size for accurate results.
Samples were protected from light and sealed after sieving
with 10 mesh, 18 mesh, 40 mesh, 60 mesh, 80 mesh,
100 mesh and 120 mesh screen. Parallel detection was
performed seven times and the relative standard deviation
(RSD) was calculated to examine the precision (Fig. 1).
When the particle size of the sample is <100 mesh, the
RSD decreases as the particle size decreases. When the
particle size of the sample is >100 mesh, RSD tends to
be stable; there is no significant difference between the
100 mesh and 120 mesh samples. Through comprehensive
comparison, the 100 mesh particle size was selected for
subsequent experiments.

3.2 Spectral Pre-processing Results

All spectral pre-processing were performed on MATLAB
version 2014a software (MathWorks Inc., Natick, MA,
USA). All programs were written locally in the lab. The SG
smoothing with seven points was used followed by the WT
method with Coif 3 wavelet base at the ninth level for noise
deduction and baseline correction. Adaptive threshold was
used in denoising by WT decomposition, which regard per
scale level as an independent part. Three directions are
decomposed at each level according to the different char-
acteristics of the wavelet coefficients amplitude, including
the horizontal direction, vertical direction and diagonal
direction. A threshold that best matches each direction is
found for denoising, so that the noise in all directions can
be separated. The pre-processing result (Fig. 2) indicted
that the effective information of the characteristic peaks
was well preserved while the noise and background were
removed.

3.3 Comparison of Different Modelling Methods

The disadvantage of BP-ANN is that the approximation
process takes a long time, the local minimum value is often
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Figure 1. RSD of soil samples with different particle sizes.

Figure 2. Pre-processing results of XRF spectra using SG
smoothing and WT method.

wrongly taken as the result, the data fluctuates greatly
and it is difficult to obtain appropriate model parameters.
Therefore, it is less likely to use BP-ANN to obtain the
global optimal solution, which limits its use. In this study,
the LM algorithm was used to optimize BP-ANN. The
LM algorithm is a synthesis of Gauss–Newton method
and steepest descent method. LM has the advantages of
local convergence of the former and global characteristics
of the latter [38]. The self-adaptability of LM makes
it possible to adjust the damping factor to obtain the
results, so the iteration convergence speed becomes faster,
and stable and reliable solutions are obtained in many

Table 1
Modelling Results by Different Regression Methods

Modelling Evaluation Cr Cu Zn As Pb
Method Index

PR r2 0.990 0.992 0.991 0.992 0.996

BPR 0.991 0.989 0.990 0.983 0.989

LM-BPR 0.994 0.996 0.995 0.994 0.997

SVMR 0.954 0.962 0.968 0.966 0.964

PLSR 0.968 0.991 0.970 0.979 0.985

PR MSE 27.89 18.35 24.39 13.81 16.25

BPR 37.34 30.61 45.37 42.32 24.29

LM-BPR 15.70 10.55 12.78 19.61 14.43

SVMR 22.84 23.57 42.17 24.36 32.87

PLSR 33.61 25.15 56.24 40.73 21.67

non-linear optimization problems [39]–[43]. Compared
with ordinary BP algorithm, LM-BP has fewer iterations,
faster convergence and higher accuracy, and is not easy to
converge to local extremum.

Different modelling methods were used to build the
quantitative detection models of heavy metals in soil
samples, including polynomial regression (PR), BP-ANN
regression (BPR), LM-BP-ANN regression (LM-BPR),
support vector machine regression (SVMR) and partial
least squares regression (PLSR). The mean square error
(MSE) and decision coefficient (r2) were used to evalu-
ate the accuracy of the modelling results. The modelling
results (Table 1) showed that with the LM-BPR method,
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Figure 3. Structure of a typical three-layer BP-ANN.

all of the r2 of five heavy metals were the highest, and the
MSE values were the lowest (except for As, which got the
lowest MSE with the PR method). Therefore, LM-BPR
was chosen as the modelling method because it has better
accuracy.

3.4 Modelling Results by LM-BPR

Before modelling, the concentration gradient method was
used to divide the sample data into three parts: training
set, validation set and test set with a ratio of 2:1:1. The
function of training set is to establish the calibration model,
and the validation set and the test set are used to assess the
model. The input of the model is the sample spectral of the
training set, and the corresponding target element contents
of the training set sample were used as the expected output
matrix. A typical three-layer BP-ANN was used to train
and establish the quantitative analysis model, including
the input layer (I), the output layer (O) and the hidden
layer (H) (Fig. 3).

The signal Ii is written, assigned weight and normal-
ized by the input layer, and then the data is sent to the
hidden layer, where the data is calculated and analysed
according to the previously assigned weight. The obtained
result is transferred to the output layer to get the output
signal Oi through non-linear transformation. The sample
in the training network is composed of the input vector (I),
the expected output value (T ), the network output value
(O) and the deviation of T . The error is reduced according
to the gradient direction by adjusting the network weight
wih between the input layer node and the hidden layer
node, the network weight vho between the hidden layer
node and the output layer node, and the threshold value.
By repeating this process, the weights and thresholds are
obtained at the lowest error level. The successful modelling
neural network can present the calculation results with the
smallest output error with nonlinear processing.

Table 2
Optimization Conditions of BP-ANN for

Different Heavy Metals

Cr Cu Zn As Pb

Neurons number 4 3 7 5 4

Learning rate 0.3 0.25 0.2 0.2 0.05

Epoch time 11 6 8 15 40

Table 3
Decision Coefficient (r2) of Modelling Results for

Different Data Set

r2train r2valid r2test r2whole

Cr 0.9986 0.9934 0.9919 0.9942

Cu 0.9996 0.9937 0.9880 0.9955

Zn 0.9998 0.9959 0.9808 0.9946

As 0.9986 0.9922 0.9900 0.9943

Pb 0.9998 0.9938 0.9942 0.9968

Optimization conditions were required for modelling,
including the number of hidden layer neurons, learning
rate and epoch time. The number of neurons in the hidden
layer affects the prediction accuracy. Too few hidden layer
neurons will result in too simple results and insufficient
prediction accuracy. Too many neurons will lead to over-
fitting and inaccurate prediction results. The number of
neurons in the hidden layer was measured in the range of
3–20 in this study. The learning rate affects the speed
of the processing. Too low learning rate can easily lead
to slow processing speed, long training cycle, and slow
convergence speed; too high learning rate can easily cause
system instability, resulting in data fluctuations and data
redundancy. The best learning rate was optimized in the
range of 0.05–0.8. In the experimental results, the MSE
between the predicted results and the actual value was
taken as the evaluation index and the smaller the value, the
better the result. The optimized parameters are presented
in Table 2.

Quantitative soil heavy metal analysis models of train-
ing set, validation set, test set and whole data set were
established after the spectra were pre-processed. The de-
cision coefficient of the training set (r2train), validation set
(r2valid), test set (r2test) and the whole data set (r2whole)
between the model prediction results and the standard val-
ues (detected by corresponding chemical analysis method)
is presented in Table 3. The modelling results (Fig. 4)
showed that the values were numerically close, indicating
that the results predicted by LM-BPR were sufficiently
accurate.
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Figure 4. Correlation between standard value (chemical analysis) and predicted value (XRF modelling results) for Cr (a), Cu
(b), Zn (c), As (d) and Pb (e) on the whole data set.

4. Conclusion

The detection conditions were optimized and the optimum
particle size was determined to be 100 mesh. Accurate
quantitative models for Cr, Cu, Zn, As and Pb were built
using LM-BPR method on the basis of the pre-processing
method with SG smoothing and WT analysis. The
advantages of LM-BPR method are small matrix effect,
convenient calculation and high reliability of quantitative
detection. Several modelling methods were compared, the
LM-BPR showed higher accuracy than other methods. The
LM-BPR method has high modelling efficiency and good
stability, and can effectively avoid local convergence. By
using the LM-BPR method, a rapid quantitative analysis
method was established by building different heavy metal
models separately, which provides some theoretical sup-
port for using XRF spectrometer to improve the rapid and
accurate detection of heavy metals in soil.
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