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Abstract

Heavy metal pollution in soil has got more and more attention, and

X-ray fluorescence spectroscopy analysis is a widely used method for

heavy metal content in soil. The establishment of accurate model

is helpful for the rapid detection of heavy metal content. Firstly,

eight spectrum pretreatment methods are used before modelling,

and the pre-processing method of least squares which improved

multi-scatter correction is chosen. Secondly, Boosting-backward

interval partial least squares (Boosting-BiPLS) model is established

which combines several basic models with different characteristics

into a strong one to solving the “building nesting effect� of BiPLS.

Then from bias-oriented model, an improved Boosting-BiPLS model

is proposed, in which the weight of samples is adjusted on the basis

of the relative deviation of the samples and the weight of base

models is dynamically calculated by the spectral similarity. Finally,

to prove the effectiveness of the improved model, the improved

Boosting-BiPLS model is compared with the traditional Boosting-

BiPLS model. The results show that the correlation coefficients of

the five heavy metal elements of the improved Booting-BiPLS model

are all about 0.99, and the average relative deviations are all <10%,

with the prediction accuracy of Boosting-BiPLS improved by more

than 50%. Moreover, the model is more stable.
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1. Introduction

A large number of quantitative models for soil heavy metal
detection based on XRF spectroscopy have been studied,
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including one-dimensional linear regression model [1], [2],
multiple linear regression model [3], partial least squares
(PLS) regression model [4], and support vector machine
(SVM) regression model [5]. Back Propagation neural
network [6] is also used in a small amount in the heavy
metal content detection model. Linear regression is simple
to calculate, but it is easy to produce the problem of
underfitting. PLS is widely used to solve the problem
of multicollinearity among small sample variables, but
the data information may be lost when the dimension is
reduced. SVM has low generalization error, and easy to
explain, but it is sensitive to the selection of parameters
and kernel functions. BP neural network has the ability
of nonlinear mapping, self-learning and self-adaptation,
but its disadvantages are that it is easy to fall into local
minimum value, the network convergence speed is slow,
there are too many network structure parameters and so
on [7]–[10].

The integrated learning model can organically com-
bine multiple single learning models to obtain a more ac-
curate, stable and robust model. In recent years, the
integrated learning model has been widely used in near-
infrared spectroscopy [11]–[13]. However, in the detection
of heavy metal content based on X-ray fluorescence (XRF)
spectroscopy, integrated learning method is currently used.
The research of modelling is still relatively rare, especially
the research on the fusion of integrated learning strategies
for spectral variables.

At present, the research on integrated learning is
mainly applied to classification. Experts and scholars
have done a lot of research on the weight of classifiers
in terms of weighing differences and accuracy. They can
be roughly divided into the following categories: classifier
weight optimization based on difference metrics [14]–[16],
classifier weight optimization based on difference and accu-
racy [17]–[20], and weight optimization based on classifier
credibility [21].

In this paper, XRF spectroscopy is used as the research
object, and adopt the Boosting integration idea. According
to the discomfort of the test sample and the base model,
a spectral similarity measure on the basis of the similarity
between the test sample and the training sample spectrum
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Table 1
Soil Samples Configuration (unit: 0.1 )

Soil Sample Label Heavy Metal Element

1–40 41–50 51–60 61–70 71–91

As element concentration 0.6 2 × 0.6 3 × 0.6 4 × 0.6 J× 0.6

Cu element concentration 0.8 2 × 0.8 3 × 0.8 4 × 0.8 J× 0.8

Cr element concentration 1.5 2 × 1.5 3 × 1.5 4 × 1.5 J× 1.5

Pb element concentration 1.0 2 × 1.0 3 × 1.0 4 × 1.0 J× 1.0

Zn element concentration 2.5 2 × 2.5 3 × 2.5 4 × 2.5 J× 2.5

Figure 1. AAS determination concentration profile (a) and average spectrum of 87 samples (b).

is proposed to improving the traditional Boosting-BiPLS
model. Then the improved Boosting-BiPLS model is com-
pared with the traditional Boosting-BiPLS in accuracy and
stability.

2. Materials and Data

2.1 Sample Production

To improve the detection performance of heavy metals in
the instrument, 91 samples were taken from farmland with
no pollution source around 1,000 m. Then removing weeds,
roots, stones, and other debris, using ceramic utensils
for mixing, crushing, grinding, and pack with 100-mesh
nylon sieve. According to the national standard [22], the
content of each heavy metal in the first, second, and third
grade soils is determined according to the certain content.
Concentration gradients were added dropwise to different
volumes of standard solutions of Cu, Pb, Zn, Cr, and As,
and thoroughly stirred to make them evenly mixed. The
specific soil samples concentration configuration scheme is
shown in Table 1.

2.2 Data Collection

Considering the human error and instrument error in
the actual configuration process, the concentration of five

heavy metal elements was determined by atomic absorp-
tion spectroscopy (AAS) after samples configuration were
completed. Then the prepared samples were placed on the
instrument test bench for spectral scanning, and each sam-
ple was scanned three times. After removing four abnor-
mal samples, the concentration distribution and average
spectrum of the remaining 87 samples are shown in Fig. 1.

The training samples and test samples are divided by
the concentration gradient method. The method divides
the samples into two groups according to the chemical
reference value of the measured samples, including 58
training samples and 29 test samples. The distributions
are shown in Fig. 2.

2.3 Spectral Pretreatment

In addition to the useful chemical information, the spec-
trum also contains a large amount of interference informa-
tion such as background noise and irrelevant information.
Therefore, the pre-processing of the spectrum before the
established calibration model can not only remove the in-
fluence of unrelated factors on the target spectrum but
also improve the robustness and prediction accuracy of the
model.

Eight spectrum pretreatment methods are used, in-
cluding PLS improved multi-scatter correction (PLSMSC)
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Figure 2. Training samples distribution (a) and prediction samples distribution (b).

Table 2
Spectral Pretreatment Results

Method Unprocessed SNV WT DT MSC SNV+DT SG+1-Der SG+2-Der PLSMSC

R2 0.988 0.988 0.986 0.692 0.990 0.772 0.986 0.978 0.986

RMSEP 20.809 20.76 21.44 90.18 19.55 79.58 21.81 27.22 19.05

MRD 0.166 0.143 0.143 0.73 0.138 0.658 0.136 0.197 0.121

[23], detrended processing (DT), standard normal variable
(SNV) transform, multiple scattering correction (MSC),
wavelet denoising (WT), SNV+DT, convolution smooth-
ing (SG) + first derivative, convolution smoothing (SG)
+ second derivative, and BiPLS model is built and com-
pared. The results are shown in Table 2. According to
the analysis of Table 2, the correlation coefficient, root
mean square error of prediction (RMSEP), and mean rel-
ative deviation (MRD) with PLSMSC method are 0.986,
19.051, and 0.121, respectively, which are better than other
conventional pretreatment methods.

3. Adaptive Boosting Integration Method

3.1 Boosting Integration Framework

Boosting is an integrated learning framework, its core
idea is to combine multiple weak classifiers with different
strategies into a strong classifier. The key of constructing
an integrated model is to adjust the weight of samples and
weight of base models.

This paper is bias oriented, and the weight improve-
ment methods of samples and base model are proposed.
The weight of samples is adjusted on the basis of the
relative deviation of the samples, and the weight of base
models is dynamically calculated by the spectral similarity
of the test sample and the training samples. The spe-
cific adaptive Boosting integration framework is shown in
Fig. 3.

3.2 Sample Weight Adjustment Strategy

Through previous research and analysis, it is found that the
deviations of the single PLS model and the variable interval
selection model are somewhat large. Therefore, the sample

Figure 3. Adaptive boosting integration framework.

weight adjustment strategy in this study is adjusted on the
basis of the relative deviation of the sample. The specific
sample weight adjustment strategy is shown as follows.

Sample weight adjustment algorithm

1. The samples need to select: Lt={(x1, y1), . . . , (xN , yN )},
t = 1

2. Initialization iteration number T , initialization sample
weights W0 = 1/N

3. While t<=T
4. Calculating sampling probability: P t

i = W t
i

/

∑N
i=1 W

t
i , t = 1, 2, · · · , T
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5. Roulette sampling: L′ = resample(Lt, P t)

6. Taking L′ as a new sample, call the base model ft
7. Using base model ft to predicts training samples,

calculate the prediction error of the sample:

Lt
i =

|yt
real(i)−yt

pred(i)|
max |yt

real(i)−yt
pred(i)| , i = 1, 2, . . . N

8. Calculating weighted error sum: L̄t =
N∑
i=1

Lt
iP

t
i

9. Calculating common indicators: βt =
L̄t

1−L̄t

10. Calculating the new weight of the sample:

W t+1
i = W t

i β
(1−L̄t)
t

11. Using the sample weight adjustment algorithm to get
the next round of training samples L′

12. End

3.3 Base Model Weight Adjustment Strategy

The weight of the base model is a very important step in
the Boosting-BiPLS. In this study, to reduce the deviation
between the predicted value and the actual value, improve
the model weight adaptive ability and the participation
of effective information, an adaptive base model weight
adjustment strategy on the basis of spectral similarity
measure is proposed. First, a number of base models are
trained according to the sample weight adjustment strategy
sampling. Secondly, the training samples are clustered,
and the weight matrix of the cluster is calculated for each
class through the trained base model. Then, each test
sample and class are calculated. The spectral similarity of
the cluster centroids results in a similarity matrix. Finally,
the base model weight matrix of each sample is obtained
by multiplying the similarity matrix and the weight matrix
and normalizing the matrix. The specific base model
weight adjustment strategy is shown in Fig. 4.

Figure 4. Base model weight adjustment strategy flow
chart.

4. Experimental Results and Discussion

4.1 Selection Parameters

In this paper, the K-means clustering method on the basis
of Euclidean distance is used to cluster 58 training samples
into 3 categories. The clustering results are shown by Zn
elements, the samples distribution are shown in Table 3.
According to Table 3, the spectrum of the training samples
is mostly concentrated in category 2. The concentration
of Zn is concentrated between 53.1396 and 434.0840. The
difference between category 1, category 2, and category 3
is very obvious. This shows that the clustering method can
effectively divide the training samples into three categories.

The number of principal components and the number
of base models in this paper are the Boosting-PLS model
parameters that have been cross-validated in the previous
period, i.e., the number of principal components is set to
4, and the number of base models is set to 38.

4.2 Performance Analysis

In this paper, weighted average and weighted median are
selected as traditional Boosting-BiPLS model to calculate
heavy metal content, and the improved Boosting-BiPLS
model is compared with the traditional model. The mod-
elling results of the three models are shown in Fig. 5.

It can be seen from Fig. 5 that the RMSEP of five
heavy metal elements calculated by the weighted average
method is large, the relative average deviation is about
24%–50%, and the volatility is also fierce. The five heavy
metal elements with the weighted median have been greatly
improved in correlation coefficient, RMSEP, MRD, and
standard deviation (STD) than weighted average.

The weight adjustment strategy proposed in this pa-
per is performed best of the three models, the correlation
coefficient of five heavy metal elements is all about 0.99,
the MRD is reduced to below 10%, and the fluctuation of
model deviation is less sexual. According to the data anal-
ysis and summary, the improved Boosting-BiPLS model
on the basis of spectral similarity calculation solves the
incompatibility of the test sample and the base model, and
improves the utilization of global effective information and
the accuracy of the model.

4.3 Stability analysis

Because the training samples of improved Boosting-BiPLS
are obtained through roulette, the training samples col-
lected in each round are not necessarily the same and the
trained model is slightly different. To verify the stability
of the model, the model runs 50 iterations for observation
and analysis. The results of the five heavy metals gener-
ated in each iteration are shown in Figs. 6 and 7. It can
be seen from the figure that Cu, As, and Pb are relatively
stable, and due to the large concentration gradient, Zn and
Cr have larger fluctuations than Cu, As, and Pb, but in
general the five heavy metals are relatively stable. Com-
bined with Figs. 6 and 7, the improved Boosting-BiPLS is
a stable model.
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Table 3
Cluster Data Distribution Table of Training Samples

Sample Number of Density Range Average Standard

Category Samples of the Zn Value Deviation

Category 1 9 405.3560–1,292.9400 769.3733 305.0197

Category 2 38 53.1396–434.0840 166.1574 103.5492

Category 3 11 52.7382–272.9100 161.0032 69.4980

Figure 5. R (a), RMSEP (b), MRD (c), and STD (d) of the three models.

Figure 6. RMSEP fluctuation figure.

4.4 Modelling Accuracy Analysis

To further verify the accuracy of the improved Boosting-
BiPLS model on the basis of the spectral similarity, Fig. 8
is analysed from fitting results. Figure 8 shows the fit of

Figure 7. SD fluctuation figure.

the predicted and actual values of the five elements. It can
be seen from the figure that the sample points of the five
elements are all distributed near the regression curve, this
illustrates that the predicted values and actual values are
better fitted.
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Figure 8. Fitting map of predicted and actual values of five heavy metal elements.

5. Conclusion

To solving the “building nesting effect” of BiPLS, taking
Boosting integration idea, Boosting-BiPLS model is es-
tablished. Then from bias-oriented model, an improved
Boosting-BiPLS model is proposed, in which the weight
of samples is adjusted on the basis of the relative de-
viation of the samples and the weight of base models
is dynamically calculated by the spectral similarity. To
prove the effectiveness of the improved model, weighted
average and weighted median are selected as traditional
Boosting-BiPLS model to calculate heavy metal content,
and the improved Boosting-BiPLS model is compared with
the traditional model. The experimental results show that
the improved Booting-BiPLS model performs better than
the traditional Boosting-BiPLS model, and the improved
Boosting-BiPLS model on the basis of spectral similarity
metric has higher prediction accuracy and stability, and
can be used for online real-time detection of heavy metals
in soil.
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