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Abstract

When recognizing multi-class motor imagery electoencephalogram

(EEG) signals directly using stacked denoising autoencoders (SDA),

it is difficult to fully train the weights due to the small sample

size, which results in poor classification effect. To overcome this

problem, the multi-scale recurrence plot and SDA method are

combined to extract features of multi-class motor imagery EEG

signals for recognition. Firstly, multi-class motor imagery EEG

signals are decomposed into a series of intrinsic mode functions

(IMFs) with different scale by synchrosqueezed wavelet transform,

and the recurrence plot of each IMF is constructed to form one-level

feature data as input samples of SDA. Then, high-level abstract

features which can better express category attributes are extracted

from multi-scale recurrence plot by SDA. Finally, EEG signals are

classified by using Softmax classifier. Four types of motor imagery

EEG data of Datasets 2a in BCI Competition IV are used to

verify the proposed method. The average classification accuracy is

0.89, which shows that the proposed method has good effectiveness

and robustness.
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1. Introduction

Brain–computer interface (BCI) allows direct communi-
cation of information between the brain and the outside
world without passing through human nerves and muscle
tissues. Serious neuromuscular disorder patients, such as
cerebral palsy and spinal cord injury, can use BCI system
to control external auxiliary equipment such as wheelchair
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and service robot through brain nerve activity, so as to
restore the ability of movement and communication to a
certain extent [1].

When people perform different limb movements or
imagines, specific electoencephalogram (EEG) signals are
produced in the sensory areas of brain neurons [2]. BCI
system captures EEG signals of motor imagery task and
recognizes them, so as to realize information exchange
and control between human brain and external equipment.
However, the motor imagery EEG signal is a highly com-
plex non-linear and non-stationary signal. How to extract
features from EEG and recognize the motion imagination
task effectively is very important for the operation of BCI
system.

At present, many methods have been applied to fea-
ture extraction of EEG signals in motion imagery, such
as wavelet transform [3], [4], [7]–[9], empirical mode de-
composition [5], common spatial mode method [6], [7],
Bayesian network method [8] and phase space recurrence
plot method [9], [10]. Among them, the phase space recur-
rence plot method is widely used in feature extraction of
EEG signals and has achieved good results. Niknazar et al.
[9] used recurrence plot to classify EEG signals of epilepsy
patients. In the EEG classification tests of healthy and
sick patients, the classification accuracy reached 98.67%.
Shabani et al. [10] analysed EEG signals under drowsiness
and alertness by quantitative analysis of recurrence plot.
The classification experiments were carried out by using
permutation entropy and recursion rate. The experimen-
tal results show that the classification accuracy can reach
90%. Bian et al. [11] analysed and studied the EEG
signals of acupuncture and moxibustion with phase space
reconstruction recursive graph. The results showed that
the deterministic recursive vector feature and correlation
dimension could effectively distinguish the EEG signals
before and during acupuncture.

However, these methods have not achieved ideal accu-
racy in multi-class motor imagery task recognition. The
main reason is that for many kinds of motor imagery EEG
signals, although the phase space reconstruction recur-
rence plot can reveal the internal structure of EEG signal
sequence to the greatest extent and provide the recursive
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state of EEG system, the recurrence plot still has complex
spatial distribution and low discrimination, which cannot
provide effective features for subsequent recognition. To
improve the classification accuracy, firstly, multi-scale fil-
tering is needed for EEG signals, and multi-scale recur-
rence plots are used to provide more concise and effective
distinguishing features. Secondly, it is necessary to ex-
tract more distinguishing features from recurrence plot.
Recently, the synchrosqueezed wavelet transform (SWT)
and deep learning theory provide a good way to construct
multi-scale recurrence plots and extract the quadratic
features of recurrence plots.

SWT is a non-linear time–frequency reallocation algo-
rithm developed on the basis of continuous wavelet trans-
form [12]. By squeezing the coefficients of continuous
wavelet transform in the direction of frequency domain,
SWT can obtain more accurate time–frequency curve. So,
SWT method can not only improve the phenomenon of
mode aliasing, but also have good robustness to noise.
SWT has been widely used in the analysis of electrocardio-
gram and EEG signals [13], [14] and has achieved better
results than wavelet analysis and empirical mode decom-
position. Stacked denoising autoencoders (SDA) [15] is a
typical deep learning network model. It imitates human
brain mechanism to interpret data and forms more ab-
stract and high-level feature expression by combining low-
level features. However, SDA learns the features of data
automatically in semi-supervised way. If the recurrence
plots of motor imagery EEG signal are directly used as the
original data, because the texture of the recurrence plots
is too complex and the discrimination between recurrence
plots is low, the features that SDA learns may not be
closely related to the category attributes, which ultimately
leads to the unsatisfactory classification results [16], [17]
After SWT processing, the modal components of different
frequencies are extracted separately. The recurrence plot
of each modal component eliminates a lot of interference
information, which provides conditions for SDA to further
extract category features.

To fully extract the effective features of motion imagery
EEG data and obtain better classification results, this pa-
per combines SWT recursive graph and SDA method. For
each motion imagination task EEG, firstly, SWT is used
to decompose it into a series of intrinsic modal functions
and construct the recurrence plot of each intrinsic modal
function. Then, the SWT recurrence plots are used as the
input signals of SDA to extract high-level features, and a
two-level multi-class EEG feature extraction method for
multi-class motor imagery is constructed. Finally, in the
experiments, the data of Datasets 2a in BCI Competition
IV are used to verify the classification effect.

2. Multi-Scale Phase Space Reconstruction
Recurrence Plot based on Synchrosqueezed
Wavelet Transform

2.1 Synchrosqueezed Wavelet Transform
Multi-Scale Decomposition

SWT is a new multi-scale time–frequency analysis method
on the basis of continuous wavelet transform. Supposing

the multi-component non-linear signal is

f(t) =
K∑
k=1

fk(t) =
K∑
k=1

Ak(t) cos[2πφ
′
k(t)]

where Ak(t)> 0, φ′k(t) > 0. SWT can accurately analyse
the frequency of each component in f(t), and successfully
extract the harmonic component fk(t). The basic theory
of SWT is as follows [12]:

Definition 1 (Intrinsic mode type function, IMTF).
If the function f(t) = A(t) cos(2πφ(t)) satisfies the fol-
lowing conditions :

A(t) ∈ C1(R) ∩ L∞(R), φ ∈ C2(R) inf
t∈R

φ′(t) > 0, sup
t∈R

φ′(t) < ∞

sup
t∈R

φ′′(t) <∞, |A′(t)|, |φ′′(t)| ≤ ε|φ′(t)|

Then the function f(t) is called the intrinsic mode type
function with precision ε (ε-IMTF). In SWT transform,
the signal is decomposed into the sum of a finite number
of IMTFs

Definition 2. If a multi-component harmonic func-
tion f(t) is said to be a superposition of well-separated
ε -IMTFs with separation d, the set of which is denoted
by Aε,d in the sequel, if there exists a finite K such that

f(t) =
K∑
k=1

fk(t) =
K∑
k=1

Ak(t) cos(2πφ
′
k(t))

where all the fk(t) are ε -IMTFs satisfying :

φ′k(t) > φ′k−1(t) and |φ′k(t)−φ′k−1(t)| ≥ d(φ′k−1(t)+φ
′
k(t))

In the following, the condition involving d will be called
the separation condition.

Assuming that the coefficients of the continuous
wavelet transform of f(t) are Wf (a, b) (a and b represent
the scaling and translation parameters of wavelet function,
respectively), the instantaneous frequency calculated by
Wf (a, b) is ωf (a, b), the main conclusions of SWT are as
follows [12]:

Theorem 1. Let the function f(t) ∈ Aε,d and set ε1 =
ε1/3. Select a function h ∈ C∞

0 and
∫
h(t)dt = 1, select a

wavelet function ψ such that the Fourier transform ψ̂ is
supported in [ξΨ −Δ, ξΨ +Δ] with Δ < dξΨ

1+d . The result
obtained by synchrosqueezing Wf (a, b), with threshold
ε1 and accuracy δ, is as follows :

Sδf,ε1(b, ω) =

∫
Aε1,f (b)

Wf (a, b)
1

δ
h

(
ω − ωf (a, b)

δ

)
a−3/2da

(1)
where Aε1,f (b) = {a ∈ R+; |Wf (a, b)| > ε1}.
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Theorem 2. When ε2 is sufficiently small, the perfect
reconstruction of component fk(t) can be realized, i.e.,
for each k ∈ {1, · · · ,K}, let

f̃k(b) = lim
δ→0

(
R−1
ψ

∫
|ω(a,b)−φ′

k(b)|<ε2
Sδf,ε1(b, ω)dω

)
(2)

then there exists a constant C so that for ∀b ∈ R, f̃k(b)
satisfies

|f̃k(b)−Ak(b) cos[2πφk(b)]| ≤ Cε2

From (2), it can be seen that after the EEG signal
f(t) is decomposed by SWT, a set of IMTF functions
{f̃k(t), k = 1, · · · ,K} can be obtained.

2.2 Phase Space Reconstruction Recurrence Plot

Using the famous embedding theorem proposed by Takens
[18], the phase space reconstruction of non-linear signals
can be carried out. The reconstructed phase space is equiv-
alent to the original dynamic system which generates sig-
nals and has the same topological structure as the original
dynamic system. After choosing the appropriate delay time
τ and embedding dimension m, an m dimensional phase
space can be obtained by construction of one-dimensional
non-linear signal {x(n)|n = 1, 2, . . . , N}, i.e.

xi = [x(i), x(i+ τ), · · · , x(i+ (m− 1)τ)],

i = 1, 2, · · · , L, L = N − (m− 1)τ

After reconstruction, the phase space trajectory matrix
can be expressed as:

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xL

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

x(1) x(1 + τ) . . . x1+(m−1)τ

x(2) x(2 + τ) · · · x2+(m−1)τ

...
...

...

x(L) x(L+ τ) · · · xL+(m−1)τ

⎤
⎥⎥⎥⎥⎥⎥⎦

where the row vector xi constitutes the phase points of
multi-dimensional phase space, and L phase points to-
gether constitute the reconstructed phase space trajectory.
In phase space reconstruction, the choice of delay time τ
and embedding dimension m is very important. In this
paper, mutual information analysis method [19] is used
to calculate the optimal delay time τ of IMTF functions,
and Cao-Liangyue method [20] is used to calculate the
minimum embedding dimension m.

After reconstructing the phase space of non-linear
signal x(n), calculating the distance rij between any two
phase points xi and xj , then the recurrence plot of x(n)
can be defined by rij as follows:

Rij = θ(ξ − rij), i, j = 1, 2, · · · , N − (m− 1)τ

where rij= ||xi − xj ||, ξ is distance threshold, θ(x) is

Heavside function, means θ(x) =

⎧⎨
⎩ 1, x ≥ 0

0, x < 0
. So the

recurrence plot can be represented as:

Rij =

⎧⎨
⎩ 1, ξ ≥ rij

0, ξ < rij
(3)

Formula (3) shows that the recurrence matrix Rij con-
sists of 0, 1. If 0 in the recurrence matrix is represented by
white dots and 1 by black dots, then the recurrence ma-
trix can be transformed into a black-and-white recurrence
plot. From the recurrence plot, the change characteristics
and trends of the non-linear time series can be clearly and
intuitively observed.

2.3 Multi-Scale Recurrence Plot of Motion
Imagination Electoencephalogram Signals

After SWT decomposition of motor imagery EEG signals, a
set of intrinsic modal type functions {f̃k(t), k = 1, · · · ,K}
with different scales is obtained. By reconstructing the
phase space of each f̃k(t) and calculating its recurrence
plot, the multi-scale recurrence plot of EEG signal can be
obtained. Taking the Datasets 2A data set [21] of the
2008 International BCI Competition IV as an example,
the EEG signals of the left hand, right hand, tongue and
foot motor imagery tasks of the A01 tester were selected.
Five-level decomposition is performed by using SWT for
the selected EEG signals. The delay time and embedding
dimension of each IMTF are calculated, respectively, by
mutual information analysis and Cao-Liangyue method,
then the multi-scale recurrence plot of each IMTF can be
obtained. The results are shown in Fig. 1.

Figure 1 intuitively presents the running state of differ-
ent motor imagery EEG signals. However, the recurrence
plot has a large amount of information, which is not easy
to be directly used for classification. So, the recurrence
plots are used as the input of SDA, and the secondary fea-
tures of motor imagery EEG signal are extracted through
supervised training.

3. Stacked Denoising Autoencoders

3.1 Autoencoders

Autoencoders (AE) is a feature expression network on
the basis of the hierarchical structure of artificial neural
networks, which is a classical model of deep learning [22].
For an AE network, if the output is equal to the input, then
the network can be trained to reconstruct the input, and
the weight of each hidden layer can be obtained. Naturally,
we get the centralized expression of input because the
sample label is not used in the learning process, so it is an
unsupervised method. AE consists of input layer, hidden
layer and output layer, the network structure is shown in
Fig. 2.
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Figure 1. The recurrence plots of IMTF1 (a), IMTF2 (b), IMTF3 (c), IMTF4 (d) and IMTF5 (e), from left to right, are left
hand, right hand, tongue and foot of motor imagery EEG signals of the A01 tester.

The work of AE is divided into two processes, encoding
and decoding, in which the encoding process is a mapping
of input to the hidden layer, expressed as:

h = fθ(x) = Sf (Wx+ b) (4)

where Sf is a non-linear activation function, commonly
used Sigmoid function, i.e. Sf = 1/(1 + exp(−x)), that
set of parameters is recorded as θ = {W, b}. The decoding

process is that the function maps the hidden layer data h
back to reconstruct y, which is expressed as:

y = gθ̃(h) = Sg(W̃h+ b̃) (5)

where Sg is a non-linear activation function using Sigmoid

function. The set of parameters is denoted as θ̃ = {W̃ , b̃}.
In two sets of parameters θ and θ̃, the weight matrix
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Figure 2. The autoencoder architecture.

Figure 3. The procedure of corrupting and reconstruction
of DAE.

W and W̃ are restricted to satisfy W̃ = WT . Then
the optimal parameters are calculated by minimizing the
reconstruction error L(x, y) = ||x − y||2 of the network
using training sample data.

θ∗, θ̃∗ = argmin
θ∗,θ̃∗

L(x, gθ̃(fθ(x))) (6)

3.2 Denoising Autoencoders

Denoising autoencoder (DAE) is a distortion of AE model.
In DAE, adding a certain proportion of noise to the input
data x of AE, then, the polluted data x′ is trained as
input to the encoder, and the parameters are adjusted
to reconstruct the original input data x [23]. The noise
addition and reconstruction process of DAE is shown in
Fig. 3. Firstly, according to a certain probability P , the
random function is used to randomly select the input data
x to be zero and the remaining data remain unchanged.
Then, for the datax̂ added with noise, according to (6)–(8),
the network parameters are trained for reconstructing the
original data x to the maximum extent. In Fig. 3, x is
the original data, z is the output, x̂ is the input data with
noise, h is the hidden layer data, L(x, z) is the error of
supervisory training and qD indicates adding noise.

Because DAE network needs to eliminate the contam-
ination caused by noise and reconstruct the original data
which is not polluted, it makes the DAE network learn
the robust expression of input and also shows that DAE
has stronger generalization ability than the general AE
network

3.3 Stacked Denoising Autoencoders

By stacking several DAEs together, SDAwith deep network
structure can be formed [15], [23], as shown in Fig. 4.
Each layer of SDA uses the output of the previous layer

Figure 4. Stack noise reduction autoencoders structure.

as clean input data. The polluted data are obtained by
adding noise to the original input data, then the polluted
data will be used for network training, so that each layer
is a feature representation of the input data.

SDA is a feature extractor, which can compress high-
dimensional data into low-dimensional data by training
network to get different expressions of original input, so as
to achieve the purpose of feature extraction.

4. Two-Level Feature Extraction Method by Multi-
Scale Recurrence Plot and Stacked Denoising
Autoencoders

Combining the characteristics of multi-scale recurrence plot
and SDA in feature extraction, a two-level feature extrac-
tion method is proposed for multi-class motion imagery
EEG. Firstly, the pretreated data are decomposed by SWT
and the recurrence plot of each IMTF is calculated. Then,
the recurrence plot of IMTF is used as the input of SDA
network for extracting the second-level feature. Because
SDA does not have the ability to classify, after second-level
feature extraction of SDA network, we select Softmax clas-
sifier to classify motion imagery tasks. The steps of EEG
feature extraction and classification of multi-class motion
imagery tasks are as follows:

Step 1. Because the EEG characteristics of motor
imagery are mainly embodied in α rhythm and β rhythm,
the 8–30 Hz Chebyshev bandpass filter is selected to pre-
process EEG signal.

Step 2. For the filtered training data set, the recur-
rence plot is used to extract the first-level features. Firstly,
the EEG signals of four kinds motor imagery tasks are
decomposed by SWT, and the IMTFs are obtained. Then,
the recurrence plot of each IMTF is calculated to obtain
the first-level feature.

Step 3 The first-level recurrence plot feature of train-
ing data set is used as the input of SDA network, and
the greedy layer-by-layer training algorithm [17] is used to
train the network. That is to say, after adding noise to the
output of the former layer, as the input of the latter layer,
the layer-by-layer network is trained and the set θ = {W, b}
of parameters of the network is calculated.

Step 4 Softmax classifier is added to the n-layer net-
work as the n+1 layer of the network, and the whole net-
work is fine-tuned by supervised learning. In the process
of fine tuning, the backpropagation algorithm is used to
transfer errors from the last layer to the front layer-by-
layer, and the parameter set of the network is updated by
minimizing errors.

Step 5 The trained network is used to classify the test
data. Firstly, the first-level features of the test data set are
extracted in Step 2, and then the second-level features are
extracted in the SDA network obtained in Step 4. Finally,
the classification results of the test data are calculated.

5



Figure 5. Timing scheme of the paradigm.

5. Analysis of Experimental Results

5.1 Description of Experimental Data

In this paper, two groups of experimental data are used for
the experiment. The first set of experimental data is from
the Datasets 2A data set of the 2008 International BCI
Competition IV, which was provided by Graz University of
Science and Technology, Austria. The data included four
types of motor imagery tasks: left hand, right hand, tongue
and foot movements of nine subjects (Nos. A01–A09).
The experimental method of data acquisition is shown in
Fig. 5. During the first 2 s after the start of experiment,
the subjects sat relaxedly and comfortably in front of
the screen, and the screen displayed the “+”’ symbol.
At the end of 2 s, the screen begins to provide arrows
corresponding to the top, bottom, left and right directions
of the four tasks. Subjects need to do corresponding motor
imagery tasks according to the direction of the arrows that
appear. Task imagination lasts for 4 s, i.e., until 6 s. Then
there was a period of rest, the subjects relaxed to prepare
for the next group of experiments. Each participant’s
experiment was completed in 2 days. Six groups were
collected every day. Each group had 48 motor imagery
data. All data were divided into 288 training samples and
288 test samples. In the experiment, 25 channels were
collected, 22 of which were EEG, and the other 3 channels
were EEG.

The second set of experimental data is from K3b
data set of the 2005 International BCI Competition IIIa,
which is also provided by Graz University. The data
set recorded the subjects’ four types of motor imagery
tasks: left hand, right hand, foot and tongue, as shown

Figure 6. Classification accuracies with various value of m.

in Fig. 5. Each experiment lasts 7 s and consists of
four stages. The experimental process is the same as
that of the first experimental data. In the second group
of experimental data, 90 experiments were conducted for
each motor imagery and 360 experiments were conducted
in total. The number of EEG acquisition channels is 60.
Hold-out cross-validation method was used to calculate the
classification accuracy of 360 groups in data sets (90 times
each for left hand, right hand, foot and tongue). The 90
sets of data in each group are divided into two subsets.
One group contains 45 sets of data as training set and
the other group contains 45 sets of data as test set, which
are classified and exchanged with each other. The average
value of the two classification results is taken as the final
classification accuracy.

In both sets of experimental data, the sampling fre-
quency is 250 Hz, and the filter is carried out by using
0.05–100 Hz bandpass filter and 50 Hz power frequency
notch filter. Kappa coefficient is used as the criterion
to measure the classification accuracy in the competition.
The calculation method of Kappa coefficient is as follows:

kappa =
D − 1/C

1− 1/C

where C is the correct rate of classification and D is the
number of categories.

5.2 Parameters Selection

In extracting the features of the first-level multi-scale
recurrence plot, it is necessary to determine the decom-
position level number m of EEG signals when they are
decomposed by SWT. In the extracting of the second-level
feature, the structure of SDA network and noise level needs
to be determined. These parameters will directly affect the
accuracy of feature extraction and the final classification
accuracy.

In this paper, we use the method of 10-fold cross-
validation of training sample data to select these param-
eters. The trend of the average classification accuracy of
each subject’s data and that of all subjects’ data varying
with the parameter m is shown in Fig. 6. As can be seen
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Table 1
Mean Kappa Coefficient Variation with the Number of

Hidden Layers

Number of layer 2 4 6 8 10

Accuracy 0.7175 0.7532 0.7250 0.7033 0.6852

Table 2
Mean Accuracy Variation with the Number of Units in

the Hidden Layer

Combination 24–24–24–24 24–28–24–8 24–32–32–20

Accuracy 0.7504 0.7532 0.7521

from Fig. 6, with the increase in parameterm from 2 to 11,
the classification accuracy of each subject’s data increases
gradually at first, and then decreases after reaching the
maximum. This result is consistent with the discussion
in [24] that selecting too many features does not improve
the classification accuracy. Although the classification ac-
curacy of each subject’s data is quite different, the corre-
sponding m values are between 4 and 7 when the accuracy
is the highest. When m = 5 in SWT decomposition, the
average correct rate of classification is the highest for all
subjects, considering the adaptability of the algorithm to
different subjects, this paper chooses the optimal decom-
position level m=5 to extract multi-scale recurrence plot
features.

The number of hidden layers and the neurons unit
number of each hidden layer are selected separately to
carry out experiments. To compare the effects of different
layers on classification accuracy, the number of neurons
units in each hidden layer is taken as 30, and the average
Kappa value varies with the number of layers as shown in
Table 1. As can be seen from Table 1, the average Kappa
coefficient is optimal for all subjects when the hidden layer
is four layers. As the number of layers increases, the
network becomes more complex; however, the classification
performance decreases significantly. After the number of
hidden layers is determined to be 4, the influence of the
number of each hidden layers on classification accuracy
is analysed. Considering reducing the feature dimension

Table 3
Comparison of Kappa Coefficient Obtained from Proposed Method, First Three Teams of the

Competition and Other Reference Method

A01 A02 A03 A04 A05 A06 A07 A08 A09 Average

First place 0.6805 0.4214 0.7516 0.4807 0.4008 0.2703 0.7717 0.7522 0.6102 0.5710

Second place 0.6923 0.3451 0.7107 0.4425 0.1614 0.2125 0.6623 0.7318 0.6902 0.5165

Third place 0.3855 0.1890 0.4854 0.3319 0.0749 0.1474 0.2926 0.4975 0.4462 0.3167

Reference [26] 0.7322 0.4525 0.7737 0.4729 0.2290 0.3276 0.7632 0.7731 0.7114 0.5817

Our method 0.7520 0.4807 0.8176 0.5266 0.4128 0.3782 0.7874 0.8010 0.7356 0.6337

and avoiding over-fitting, besides setting the same number
neurons unit of each hidden layer, the network structures
with different number neurons unit of each hidden layer
are selected for classification experiments. The average
Kappa coefficients of three typical composite structures are
shown in Table 2. In comparison to the number of hidden
layer, the combination of different neurons units of each
hidden layer has no obvious effect on the average Kappa
coefficients.

Therefore, in SDA network, the number of network
layers is set to n = 4, the number of neurons unit in
each hidden layer is 30–28–24–8, and the noise intensity is
P =0.12.

5.3 Analysis of Experimental Results

Four classifications of motor imagery tasks were tested on
Datasets 2A data set by using two-level feature extraction
method on the basis of multi-scale recurrence plot and
SDA. Table 3 presents the classification results of each
subject’s data. For comparison, both the classification
results of the top three in BCI Competition IV on Datasets
2A data set [25] and the classification results of [26] on
the same data set are given in Table 3. In the first
place of the competition, the improved filter bank CSP is
extended to many classes by OVR, and the classifier used
in experiments is Naive Bayesian Parzen window classifier
[25], [27]. In the second place of the competition, OVO–
CSP was used to extract features, then LDA was used to
further reduce dimensionality and Bayesian classifier was
used to classify EEG signals [25], [28], [29]. CSP is used
for feature extraction in the third place of the competition,
and SVM is used as a classifier to construct three groups of
two-level binary tree multi-class classifiers for classification
[25]. In [26], after wavelet packet decomposition, OVR–
CSP is used to extract features, and then SVM and BP
neural networks are combined for classification.

As can be seen from Table 3, the average Kappa co-
efficient of all subjects obtained by the proposed method
is 0.6325, which is 10.77% higher than the first place in
the competition, and 8.73% higher than that of the liter-
ature [26]. Because the proposed method carries out the
second-level SDA feature extraction on the basis of the
multi-scale recurrence plot, the classification performance
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Figure 7. Comparison of classification performance of SDA, SWT-RP and SWT-RP-SDA. Evaluation data comprised of
training samples (a) and test samples (b).

is significantly improved than that of the first-level feature
extraction method [30], [31], and the overall Kappa co-
efficient average increases about 0.136 than the first-level
feature extraction methods. Although reference [18] points
out that the classification performance on the basis of con-
test data will be influenced by random fluctuation factors,
which cannot fully show the performance of an algorithm,
the comprehensive comparison results in Table 3 still show
that the proposed method has good performance in feature
extraction of motion imagery EEG.

To further analyse the advantages of two-level fea-
ture extraction methods, the classification performances
of multi-scale recurrence plot feature extraction method,
SDA feature extraction method and the proposed method
are compared [32]. In the experiment, 198 training samples
were randomly selected from 288 training samples of the
data set to train SDA and classifier. The classification
test used two test sets, one consisted of the remaining 90
training samples, and the test results are shown in Fig.
7(a); the other consisted of 90 randomly selected samples
from 288 test samples of the data set, and the test results
are shown in Fig. 7(b).

As can be seen from Fig. 7(a) and (b), the results of
using SDA alone are significantly lower than those of the
other two methods. The average correct rate is slightly
higher than 0.25, which is close to the performance of ran-
dom classification. This result shows that when only SDA
is used to extract EEG features, it is difficult to learn the
features related to category attributes because of complex-
ity of EEG signal. When the test set is training sample,
the classification accuracy of two-level feature extraction
method proposed in this paper is higher than the single
multi-scale recurrence plot method, the advantage is par-
ticularly evident in subjects A03, A07 and A09. When
the test set comes from the test sample, the accuracy of

the two methods decreases, but the two-level feature ex-
traction method is still better than the single multi-scale
recurrence plot method. In conclusion, the two-level fea-
ture extraction method is superior to the single multi-scale
recurrence plot and single SDA feature extraction. In the
two-level feature extraction method, the first-level recur-
rence plot extracts the features that preliminarily differen-
tiate motion imagery tasks. In the second-level feature ex-
traction, SDA network can extract more abstract category
expression by self-learning, which can extract more expres-
sive low-dimensional features. Therefore, the classification
accuracy is improved significantly.

6. Conclusion

Extracting features that can express motor intentions well
from complex motor imagery EEG are the key of BCI sys-
tem. Although the recurrence plot method achieves good
results in the classification of two types of EEG tasks, it is
difficult to achieve high classification accuracy for multiple
types of motor imagery EEG tasks. SDA network can au-
tomatically learn complex high-level features and enhance
network generalization ability by adding noise to input. In
this paper, SDA network is used to extract more abstract
category attribute features frommulti-scale recurrence plot
based on SWT, and a two-level feature extraction method
for multi-class EEGs is constructed. The proposed method
achieves good classification results for four types of motor
imagery tasks on Datasets 2A data set of BCI Competition
IV. Compared with the single multi-scale recurrence plot
method and single SDA method, the classification perfor-
mance of the proposed two-level method is significantly
improved, which provides a new idea for feature extrac-
tion in multi-class motor imagery BCI. However, the ap-
plication of backpropagation algorithm in the fine-tuning
of SDA network learning in this paper will result to the

8



problem of local optimal solution, which may be the rea-
son for restricting the further improvement of classification
accuracy. Therefore, the optimization of SDA parameter
set will be the research content of follow-up work.
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