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Abstract

Unmanned aerial vehicles (UAVs) can carry out more and more

dangerous missions and strike deep in the skies over hostile military

sites. Thus, selecting appropriate UAVs to attend combat through

rapid assessment is a hot topic in current research. In consideration

of formulating practical evaluation as a three-way multiple attribute

decision making (MADM) problem, a comprehensive assessment

method based on interval-valued intuitionistic fuzzy set (IVIFs) is

introduced under the context of determining the precision combat

mission. First, the critical attributes of the UAV combat effective-

ness are determined according to battlefield intelligence. Second, the

attribute weights are computed by exploring the feature information

of attribute orders given by experts. Third, the conditional prob-

ability a UAV may be selected to fight is calculated in accordance

with an improved IVIFs score function. Then the UAVs’ classifica-

tion results of three-way decisions are obtained by setting the risk

avoidance coefficients. Finally, the validity of the given method is

proved throughout the decision-making process of selecting UAVs in

a combat mission.
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1. Introduction

Unmanned aerial vehicles (UAVs) driven by onboard power
are controlled remotely by humans and autonomously pro-
grammed to perform various tasks. Compared with the
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manned plane, the UAV has advantages of safely entering
the danger zone, simple operation, low operation cost and
flexible deployment of multiple missions [1]–[5]. With the
complexity and systematization of the battlefield environ-
ment, the comprehensive efficiency of the UAV has been
paid more and more attention. Each UAV shows benefits
and risks, however, none of them can entirely avoid reper-
cussions in combat. To optimize the combat effectiveness,
both the enemy and us, hope to perform tasks accurately
by selecting appropriate UAVs. Commanders should make
quick strikes by analyzing the climatic conditions, topog-
raphy and firepower distribution. The complexity, urgency
and dynamic nature of the battlefield make it more chal-
lenging to choose a UAV. Therefore, the selection of UAVs
is of great significance to the operational effectiveness,
support cost and ground operation of UAVs.

Usually, the existing UAV performance evaluation
methods based on hard calculation are inadequate to the
generalized UAV evaluation. What’s more, the effective-
ness of the UAV is usually evaluated by cost function,
which cannot solve all relevant variables and possible ex-
ternal environments. As a result, an inappropriate UAV
cannot present a satisfactory solution for many mission
scenarios and may lead to the incorrect or misleading de-
cision. The performance of the UAV is estimated for its
mission effectiveness, mission characteristics and battle-
field environments. Therefore, it is essential to construct a
transparent and systematic evaluation system to guide the
evaluation process realistically and scientifically.

The essence of traditional methods is two-way deci-
sions, which means that a UAV is either selected or re-
jected. Traditional methods lack the boundary region for
UAVs that should be further investigated whether they
should be chosen. Three-way decision came from a rea-
sonable interpretation of three regions of decision theoretic
rough sets, which are the acceptance of positive region,
non-commitment of boundary region and rejection of neg-
ative region [6]–[12]. Compared with two-way decisions,
three-way decisions can better avoid risks by adding a de-
layed decision option. At present, this theory has been
widely used in many fields, including cognitive concept,
social network and malware analysis. With the uncertainty
and complexity of the decision-making process, we need
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to collect more information to reach decision conclusions.
It is a new research to combine a three-way decision al-
gorithm and multiple attribute decision making (MADM)
[13]–[17] in recent years. This hybrid method can consider
both the MADM matrix and different loss functions for
individual UAVs. In the application of decision, it is diffi-
cult for experts to give an accurate assessment with exact
numbers due to the complexity of the battle. The defi-
nition of the intuitionistic fuzzy set (IFs) as an extension
of the fuzzy number [18]–[20] was proposed by Atanassov,
in which both membership and non-membership degrees
were introduced. As a further extension of IFs, Atanassov
and Gargov proposed the concept of interval-valued intu-
itionistic fuzzy set (IVIFs) [21]–[29]. It is clear that IVIFs
enables experts to give preference judgments on UAV per-
formance through interval-valued membership degrees to
reduce errors.

In this paper, the UAV evaluation method is given as
a three-way MADM problem with IVIFs. First, a general
attribute framework is constructed by discussing the influ-
ence factors on UAV performance and the battle informa-
tion, and a method to determine the weight of attribute is
given based on the superiority index of attribute. Second,
IVIFs is used for the subjective judgment of the proposed
method, and the conditional probability that the UAV
can be selected is calculated based on MADM. Third, the
classification of UAVs is obtained combined with the given
loss functions of individual UAVs. Finally, a numerical
example further illustrates the effectiveness and advantage
of the proposed method. This paper is the first attempt
to study the selection of UAVs based on the three-way
MADM under the IVIFs environment.

The other sections are set out as follows. Section 2
proposes the evaluation system of UAVs’ combat effec-
tiveness. In Section 3, we briefly describe the proposed
UAVs evaluation model based on a new three-way MADM
method with IVIFs. A case study about the UAV selec-
tion in a battle shows the applicability and power of the
introduced methodology in Section 4. Finally, concluding
remarks and future directions are presented in Section 5.

2. Evaluation System of Unmanned Aerial Vehicles’
Combat Effectiveness

Usually, specific battlefield scenarios determine the surviv-
ability and environmental adaptability of UAVs. With the
continuous innovation of science and technology, war also
appears with different characteristics of combat, for exam-
ple, the battlefield space is more extensive, the operational
command is more accurate, and the weapon killing speed
is increased. All of these accurately provide intelligence for
the battlefield and a basis for the formulation of accurate
strategic, tactical strategies and special missions in each
battle. In air combat, it is key to the current precision
operations and national military strategy research. The
scientific evaluation index system is an essential prereq-
uisite for combat effectiveness evaluation. Whether the
selection of evaluation system index is proper or not is
directly related to the evaluation result. Therefore, we
should perceive the battlefield environment to determine

UAV combat missions and select attributes of UAV combat
effectiveness to construct the decision framework.

2.1 Evaluation Attributes of Unmanned Aerial
Vehicles’ Combat Effectiveness

The evaluation system of UAVs’ combat effectiveness
should be established based on the basic elements of eval-
uation and the features of the object, which are the main
factors influencing the information warfare capability. It
strives to respond to UAVs’ combat capability to its best
and fully follow the principles of purpose, uniqueness, com-
prehensiveness and personality. Then, the main factors
affecting the optimal selection of procedural UAVs are
determined. Suppose that the assessed attribute set is
{c1, c2, . . . , c6}. The various attributes are as follows:

c1 is the reconnaissance target capability. It is the
ability to explore the operation target, which is mainly
decided by the performance of airborne detection
equipment and airborne radar. The main parameters
include detection range, search angle, resolution and
the ability to discover and identify the targets and
operate UAVs.

c2 is the battlefield flexibility. This performance in-
cludes UAVs’ pitching agility, axial agility, high perfor-
mance, conversion performance and other parameters.

c3 is the attack capacity. It is the capability and
quantity of the UAV’s airborne equipment, mainly
including the power range of the missile, the payload
distance of the seeker, the angle of departure from the
shaft and the effective launch distance.

c4 is the air survival ability. The parameters mainly
include electronic countermeasures capability, naviga-
tion, radar reflectance area and geometry size.

c5 is the coordinated combat capability. It denotes the
ability to coordinate operation and maintain uninter-
rupted communication among UAVs under a unified
organization and command.

c6 is the logistics support capability. It is the mainte-
nance capability of UAVs.

2.2 The Determination Method of Attribute
Weight

The role of the attribute weights is vital in MADM prob-
lems, which can be obtained by the superiority index of
attribute. Let {e1, e2, . . . , et} be the set of experts, and the

weight of expert ek be λk with
t∑

k=1
λk = 1. Now, we discuss

the method to determine the weights of the attributes.
First, the definition of superiority index is given.

Definition 1. Suppose that the priority order of at-
tributes is cki1 ≥ cki2 ≥ · · · ckimgiven by ek, denote rkij as:

rkij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 cki > ckj

0.5 cki ∼ ckj

0 cki < ckj

(1)
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then rij =
t∑

k=1
λkr

k
ij is the superiority index of ci over

cj, at the same time, the superiority index matrix of ci
can be constructed as Ui = (rkij)t×m.

Subsequently, we can get the superiority index of
ci(i ∈ M) in C, that is

Ri =
m∑
j=1

rij =
t∑

k=1

m∑
j=1

λkrij (2)

Then, we can believe that the weight of the attribute
ci is determined by the priority index in C, where

ωi =
Ri

m∑
i=1

Ri

, i ∈ M (3)

3. Three-way Multiple Attribute Decision Making
Model based on Interval-valued Intuitionistic
Fuzzy Set

3.1 Interval-valued Intuitionistic Fuzzy Set

Some basic concepts and related theories of IVIFs are in-
troduced in this section. In practical applications, infor-
mation is often lacking due to the imprecision and error of
data. The studies on uncertainty, which is based on IVIFs,
provides an important practical application background.

The following is a brief introduction to the basic
concepts of IVIFs.

Definition 2. Let X = {x1, x2, . . . , xn} be a universe
of discourse. Then an IVIFs p̃ on X is given by
p̃ = {< x, ũp̃(x) , ṽp̃(x) >, x ∈ X}, where ũp̃(x) denotes
the interval-valued membership degree, and ṽp̃(x) de-
notes the non-membership degree of x to p̃. For
∀x ∈ X, ũp̃(x) ⊆ [0, 1], ṽp̃(x) ⊆ [0, 1] and 0 ≤ sup(ũp̃(x))+
sup(ṽp̃(x)) ≤ 1. Conveniently, let ũp̃(x) = [a, b], ṽp̃(x) =
[c, d], then p̃ = ([a, b], [c, d]).

Definition 3. Suppose P̃ = {p̃1, p̃2, . . . , p̃m} be a collec-
tion of IVIFs, where p̃i = (ũi, ṽi) = ([ai, bi], [ci, di])(i =
1, 2, . . . ,m). Let ω = (ω1, ω2, . . . , ωm) be the weight vec-

tor for p̃i with ωi ≥ 0 and
m∑
i=1

ωi = 1. Then the IVIFWA

is a mapping IVIFWA: Ωm → Ω according to

p̃ = IV IFWA(p̃1, p̃2, . . . , p̃m)

= ω1p̃1 + ω2p̃2 + · · ·+ ωmp̃m

=

(
[
m∑
i=1

ωiai,
m∑
i=1

ωibi], [
m∑
i=1

ωici,
m∑
i=1

ωidi]

) (4)

The ranking of IVIFs plays a vital part in the decision
problem. To solve the disadvantages of common methods
[28], [29] and give a total order of IVIFs, a new IVIFs score
function is given [27], which is as follows:

Definition 4 [27]. Suppose that p̃ = ([a, b], [c, d]) is an
IVIFs, the precise score of p̃ is defined by

S(p̃) =
a+ b+ c− d+ ab+ cd

3
(5)

This new ranking procedure can improve the practi-
cality and accuracy of the decision. According to this
function, the comparison and ranking of two IVIFs are
obtained; the higher the S(p̃), the better the p̃.

3.2 Three-way Decision

Let U = {x1, x2, . . . , xn} be a finite and non-empty set, and
[xi] denote the equivalence class containing xi ∈ X under
an equivalence relation. Let Ω = {A,¬A} be the state sets
of choices, which means that an object belongs to A or
not. Suppose that Pr(A|xi) is the conditional probability
that xi can be selected, and AC = {aP , aB , aN} is the
action set, where aP , aB and aN denote x ∈ POS(A),
x ∈ BND(A) and x ∈ NEG(A), respectively. When an
object belongs to A, let λPP , λBP and λNP represent
the losses incurred for choosing actions aP , aB and aN ,
respectively. When an object belongs to ¬A, let λPN ,
λBN and λNN represent the losses incurred for choosing
actions aP , aB and aN , respectively. Then, the parameters
associated with the classification are calculated by

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
(6)

β =
λBN − λNN

(λBN − λNN ) + (λNP − λBP )
(7)

Then, U can be divided into three regions, which are
as follows:

(P1) If Pr(A|xi) ≥ α, then decide xi ∈ POS(A);

(B1) If β < Pr(A|xi) < α, then decide xi ∈ BND(A);

(N1) If Pr(A|xi) ≤ β, then decide xi ∈ NEG(A).

The schematic of the three-way decision process is
shown in Fig. 1.

Figure 1. Three-way decision process.
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Figure 2. The three-way MADM decision process.

3.3 The Algorithm of Three-way Multiple
Attribute Decision Making based on
Interval-valued Intuitionistic Fuzzy Set

Now, the specific three-way MADM evaluation model is
proposed, which can evaluate the combat effectiveness of
UAVs and help us to select appropriate UAVs to meet the
needs of combat missions.

According to a specific operational task, let U =
{x1, x2, . . . , xn} be a discrete set of UAVs, and C =
{c1, c2, . . . , cm} be the set of all attributes. Moreover, sup-
pose that ω = (ω1, ω2, . . . , ωm)T is the weighting vector

of attributes with
m∑

j=1
ωj = 1 and ωj ≥ 0. In the process

of fast operational command, it is difficult for us to carry
out accurate testing and calculation of data to select ap-
propriate UAVs, but experts can perceive the possibility
that UAVs can complete a certain attribute or not using
previous experience. Construct the IVIFs decision matrix
P̃ = (p̃ij)n×m, where p̃ij = (ũij , ṽij) = ([aij , bij ], [cij , dij ])
is the IVIFs decision value of UAV xi for attribute cj , where
ũij and ṽij denote the satisfaction judgment and dissatis-
faction judgment of UAV xi performance under decision
attributes cj , respectively. Here, we see the comprehensive
evaluation value of the UAV as the conditional possibility
that UAV can be selected. Suppose that state A denotes
the UAVs that can be selected, and state ¬A denotes the
UAVs that cannot be selected. Then construct the loss
functions of each UAV and compute decision thresholds.
Finally, U is divided into three parts according to the
decision rules. The whole decision process is shown in
Fig. 2.

The proposed UAV evaluation model includes the fol-
lowing steps:

Step 1 Based on the provided sets of UAV and at-
tribute, collect and sort out the evaluation information
given by experts and transform decision information
into IVIFs, then construct the IVIFs decision matrix
P̃ = (p̃ij).

Step 2. In accordance with (1)–(3), determine the
weights of attributes.

Step 3. Employ the given IVIFWA operator to com-
pute the aggregate of each UAV into a specific IV-
IFs p̃i(xi) using the matrix P̃ and the weight vector
ω = (ω1, ω2, . . . , ωm) based on (4).
Step 4. For ∀xi(i = 1, 2, . . . , n), aggregate the deci-
sion information of attributes, compute the conditional
probability s(p̃(xi)) of UAV xi(i = 1, 2, . . . , n) by (5).
Step 5. Based on the given loss functions λi

PN , λi
NN ,

λi
BN , λi

PP , λ
i
NP and λi

BP of alternative UAV xi(i =
1, 2, . . . , n), calculate the corresponding decision
thresholds αi and βi for UAV xi, which are given as
follows:

αi =
λi
PN − λi

BN

(λi
PN − λi

BN ) + (λi
BP − λi

PP )
(8)

βi =
λi
BN − λi

NN

(λi
BN − λi

NN ) + (λi
NP − λi

BP )
(9)

Then, obtain the comprehensive loss function and
decision threshold matrix.
Step 6. Construct the three-way decision rules
of UAVs by comparing the conditional probability
s(p̃(xi)) that can be selected and decision initial values
αi and βi of xi (i = 1, 2, . . . , n), which are as follows:

(P2) If s(p̃(xi)) ≥ α, decide xi ∈ POS(A), which
means that the UAV xi can be selected;
(B2) If β < s(p̃(xi)) < α, decide xi ∈ BND(A),
which means that the UAV xi need more informa-
tion to discuss;
(N2) If s(p̃(xi)) ≤ β, decide xi ∈ NEG(A), which
means that the UAV xi cannot be selected.

4. TheApplicationAnalysis of the PresentedModel

We will present an example to show how to use the pro-
posed model in this section. A certain army has already
made a combat plan by perceiving the battlefield situation
and gathering different sets of synthetic threat information
in the combat mission. Due to the shortage of time, it
is necessary to select the most suitable UAVs as soon as
possible. Let U = {x1, x2, . . . , x8} be a panel with eight
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Table 1
IVIFs Decision Matrix

X\C c1 c2 c3 c4 c5 c6

x1 ([0.69,0.74], [0.19,0.23]) ([0.54,0.57], [0.41,0.43]) ([0.66,0.74],[0.21,0.23]) ([0.82,0.87],[0.11,0.17]) ([0.24,0.34],[0.41,0.58]) ([0.22,0.25],[0.47,0.54])

x2 ([0.72,0.75], [0.21,0.23]) ([0.51,0.56], [0.38,0.43]) ([0.71,0.77],[0.16,0.23]) ([0.51,0.57],[0.41,0.43]) ([0.18,0.25],[0.51,0.56]) ([0.09,0.35],[0.46,0.54])

x3 ([0.51,0.57], [0.41,0.43]) ([0.45,0.48], [0.41,0.51]) ([0.68,0.74],[0.21,0.23]) ([0.52,0.57],[0.38,0.43]) ([0.19,0.25],[0.34,0.65]) ([0.22,0.25],[0.47, 0.54])

x4 ([0.62,0.65],[0.32,0.34]) ([0.62,0.65], [0.32,0.34]) ([0.45,0.48],[0.41,0.48]) ([0.51,0.57],[0.41,0.43]) ([0.20,0.27],[0.46,0.52]) ([0.54,0.58],[0.21,0.32])

x5 ([0.51,0.57],[0.41,0.43]) ([0.45,0.48], [0.41,0.51]) ([0.65,0.74],[0.21,0.23]) ([0.52,0.57],[0.38,0.43]) ([0.22,0.35],[0.41,0.53]) ([0.22,0.25],[0.47,0.54])

x6 ([0.72,0.75],[0.21,0.23]) ([0.52,0.57], [0.41,0.43]) ([0.71,0.74],[0.18,0.23]) ([0.51,0.57],[0.41,0.46]) ([0.21,0.36],[0.41,0.61]) ([0.92,0.95],[0.02,0.03])

x7 ([0.51,0.57],[0.41,0.43]) ([0.53,0.57], [0.28,0.37]) ([0.62,0.65],[0.32,0.34]) ([0.51,0.56],[0.37,0.43]) ([0.19,0.21],[0.41,0.65]) ([0.42,0.53],[0.21,0.26])

x8 ([0.71,0.74],[0.21,0.23]) ([0.51,0.54], [0.41,0.43]) ([0.71,0.72],[0.21,0.26]) ([0.71,0.74],[0.21,0.23]) ([0.22,0.25],[0.45,0.53]) ([0.32,0.47],[0.41,0.53])

possible types of combat UAVs. The decision experts eval-
uate the eight UAVs about the attribute set {c1, c2, . . . , c6}
given in Section 2 and build the decision matrix P̃ = (p̃ij),
where p̃ij = ([aij , bij ], [cij , dij ]) represents the performance
of UAV xi for attribute cj . The satisfaction degree of xi

for cj is between aij and bij , and the dissatisfaction degree
of xi for attribute cj is between cij and dij . The decision

matrix P̃ = (p̃ij) can be shown in Table 1.
Suppose that the expert set is E = {e1, e2, e3, e4}, and

the weights of experts and the order of attributes decided
by experts are given in Table 2.

Based on (1), we can obtain the superior index matrix
Ui for attribute ci (i = 1, 2, . . . , 6) as follows:

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0 1 0 0 0

0.5 1 1 1 1 1

0.5 0 1 1 1 1

0.5 1 0.5 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, U2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0.5 1 0 1 0

0 0.5 1 1 1 1

1 0.5 1 1 1 1

0 0.5 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

U3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0.5 0 0 0

0 0 0.5 1 1 0.5

0 0 0.5 0 0 0

0.5 1 0.5 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, U4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0.5 1 1

0 0 0 0.5 0 0

1 0 1 0.5 0.5 1

0 1 1 0.5 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

U5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0.5 1

0 0 0 1 0.5 0

0 0 1 0.5 0.5 1

0 1 0 0 0.5 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, U6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0.5

0 0 0.5 1 1 0.5

0 0 1 0 0 0.5

0 0 0 0 0 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

According to (2), by computing the superior index Ri

for attribute ci, we get

R1 = 4.195, R2 = 3.935, R3 = 2.05,

R4 = 3.430, R5 = 2.559, R6 = 1.807,

Then, based on (3), we can compute the weights of
attributes as follows:

ω1 = 0.273, ω2 = 0.256, ω3 = 0.134,

ω4 = 0.223, ω5 = 0.166, ω6 = 0.117

Table 2
Weight of Expert and the Order of Attributes

E The Order of Attributes The Weights of Experts

e1 c14 > c12 > c15 > c16 > c11 > c13 λ1 = 0.15

e2 c21 > c22 > c26 ∼ c23 > c25 > c24 λ2 = 0.27

e3 c32 > c31 > c35 ∼ c34 > c36 > c33 λ3 = 0.33

e4 c44 > c41 ∼ c43 > c45 > c42 > c46 λ4 = 0.25

Using (4), we can get the collective preference attribute
values p̃i(xi) of the UAV xi as follows:

p̃1(x1) = ([0.5312, 0.5805], [0.3377, 0.3912]),

p̃2(x2) = ([0.4443, 0.5211], [0.3868, 0.4365])

p̃3(x3) = ([0.4295, 0.4709], [0.3778, 0.4860]),

p̃4(x4) = ([0.5131, 0.5552], [0.3557, 0.3960])

p̃5(x5) = ([0.4303, 0.4850], [0.3876, 0.4691]),

p̃6(x6) = ([0.5361, 0.5978], [0.3448, 0.3981])

p̃7(x7) = ([0.4776, 0.5225], [0.3125, 0.4062]),

p̃8(x8) = ([0.5099, 0.5496], [0.3558, 0.3977])

By (5), compute the conditional probability s(p̃i(xi))
of UAV xi, which are given as follows:

s(p̃1(x1)) = 0.4996, s(p̃2(x2)) = 0.9015,

s(p̃3(x3)) = 0.3927, s(p̃4(x4)) = 0.4846,

s(p̃5(x5)) = 0.4081, s(p̃6(x6)) = 0.5128,

s(p̃7(x7)) = 0.4276, s(p̃8(x8)) = 0.4798

We can obtain the ranking results of UAV com-
bat effectiveness according to conditional probabilities as
follows:

s(p̃2(x2))>s(p̃6(x6))>s(p̃1(x1))>s(p̃4(x4))>s(p̃8(x8))

> s(p̃7(x7)) > s(p̃5(x5)) > s(p̃3(x3)).
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Table 3
Loss Function and Decision Threshold Value Matrix

λi
PP λi

BP λi
NP λi

PN λi
BN λi

NN αi βi

x1 0 0.2840 0.7460 0.3860 0.1600 0 0.4431 0.2417

x2 0 0.2610 0.7548 0.4570 0.1600 0 0.5323 0.24810

x3 0 0.2233 0.6380 0.5823 0.2038 0 0.6289 0.4710

x4 0 0.2297 0.3520 0.5079 0.100 0 0.5897 0.2941

x5 0 0.2175 0.5500 0.1775 0.2300 0 0.4494 0.4089

x6 0 0.2740 0.7320 0.3800 0.1800 0 0.4219 0.2821

x7 0 0.1709 0.4884 0.7054 0.2469 0 0.7284 0.4375

x8 0 0.1748 0.4995 0.6923 0.2423 0 0.7202 0.4273

Table 4
Conditional Probability and Decision Threshold Matrix

UAV αi βi s(p̃i(xi)) Decision Rule Classification

x1 0.4431 0.2417 0.4996 s(p̃1(x1)) > α1 POS(A)

x2 0.5323 0.2481 0.9015 s(p̃2(x2)) > α2 POS(A)

x3 0.6289 0.4710 0.3927 s(p̃3(x3)) < β3 NEG(A)

x4 0.5897 0.2941 0.4846 β4 < s(p̃4(x4)) < α4 BND(A)

x5 0.4494 0.4089 0.4081 s(p̃5(x5)) < β5 NEG(A)

x6 0.4219 0.2821 0.5128 s(p̃6(x6)) > α6 POS(A)

x7 0.7284 0.4375 0.4276 s(p̃7(x7)) < β7 NEG(A)

x8 0.7202 0.4273 0.4798 β8 < s(p̃8(x8)) < α8 BND(A)

For ∀xi, according to the given loss functions of UAV
xi, calculate the decision initial values αi and βi based on
(8) and (9), respectively, which are shown in Table 3.

Then, we can further obtain the classification results
of U based on rules (P2)–(N2), which are presented in
Table 4.

Obviously, we can get the conclusion as follows:

POS(A) = {x2, x6, x1}, BND(A) = {x4, x8},
NEG(A) = {x7, x5, x3}.

Thus, the set of the desirable UAVs is {x2, x6, x1}, the
set that needs more information to discuss is {x4, x8}, and
the set that cannot be selected is {x7, x5, x3}. Therefore,
we should choose {x2, x6, x1} to attend the fight. Although
the expertise and the numbers of experts are limited due
to the urgency of the battle situation and the shortage of
time and available resources, their conclusion is important
and sufficient for validating the three-way MADM process.

5. Conclusion

In this paper, we present a novel assessment method of
UAV combat effectiveness based on three-way MADM. We

evaluate different candidate UAVs and find out the suit-
able UAVs for completing the combat mission. A generic
attribute framework of UAV combat effectiveness is given.
The ability to give the attribute value as IVIFs can
effectively deal with random uncertainties in the battlefield
environment and flexibly reflect the acquisition of situation
information.

The proposed algorithm does not require complicated
calculations but only requires experts to give possible de-
cision attribute values based on their accumulated expe-
rience. The essence of this method is turning traditional
ranking results of two-way decisions into objective classifi-
cation results of three-way decisions, which is more suitable
for changeable combat situation. This method not only
divides the set of UAVs into three regions but also gives
a complete ranking according to the corresponding losses
of UAVs. However, battlefield situation is rather complex
and changeable. Fully considering these limitations, there
are suggested space for future improvements and validation
of the presented approach. The future research areas will
also be designed to apply the given evaluation model to
a more efficient level, and make the expert’s professional
knowledge and experience have a maximum use. More-
over, the effective algorithm can be used for UAV attack
mission, route selection and other practical applications.
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