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A FAST CONVERGENT CHANNEL
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Abstract

Accurate and fast convergence to the optimal channel is a challenge

in a cognitive radio sensor network (CRSN) when multiple cognitive

wireless channels coexist. Some traditional wireless channel selection

methods can be used to study the optimal channel selection.

However, their convergence speed cannot meet the requirements

because of vast computation and time accumulation. In this paper,

a rapid channel selection strategy based on machine learning called

MAB-CQ (multi-armed bandit-channel quality) is proposed. This

strategy maps the channel selection problem to the improved multi-

armed bandit (MAB) model. In the model, the second users (SUs)

and the channels in the CRSN correspond to the players and the

arms of MAB, respectively. The optimal channel is determined

based on the UCB (upper confidence bound) of MAB-CQ for each

player. In addition, the UCB equation is creatively defined to

balance the exploration and exploitation problem. At the same time,

to reduce the computation complexity, coefficients about the factors

are used to narrow down the exploratory scope of our strategy. As a

result, an accuracy optimal channel and a fast convergence speed are

achieved by iterative execution of MAB-CQ. Extensive experimental

results demonstrate that the MAB-CQ can converge to nearly 100%

within the 105 time slots. By comparison, MAB-CQ has obvious

advantages in cumulative rewards, computational complexity and

convergence speed.
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1. Introduction

With the rapid development of wireless communication ser-
vices, wireless sensor networks (WSNs) have been widely
used, such as smart home, smart city, military, anti-
terrorism, disaster relief, environmental monitoring and
other fields [1]. WSN is composed of a large number of
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micro-sensor nodes, and the unlicensed spectrum is used
between the communication nodes, such as the ISM (indus-
trial scientific medical) band. However, with the number
of devices using the unlicensed spectrum increasing expo-
nentially, the network becomes seriously congested and the
reliability of communication cannot be guaranteed. These
elements greatly limit the development of WSN [2]. At
present, cognitive radio technology is applied to WSN to
form CRSN, which can alleviate the severity of the above
problem. But, the CRSN also brings some challenges. For
example, to improve channel access speed and selection
accuracy is an urgent problem for SU [3]–[5]. Therefore,
the research of channel selection in CRSN is of significance
and it has become one of the hot research fields.

Cognitive radio technology is emerged to allow SUs
for opportunistic access the spectrum holes when primary
users are not active [6]. Thus, under the condition of multi-
channel coexistence, it is crucial for SUs to make optimal
decisions about which channel to access at different times.
Recently, some scholars have researched them by machine
learning [7]–[10]. Among them, MAB is a classical theory
for selection. It includes two factors of exploration and
exploitation and they need to be balanced [11]–[13].

From the above analysis, we can see that although
many scholars have made some achievements in this field,
there is still a lot of work to be done to improve the per-
formance of CRSN, including the improvement of conver-
gence speed and computational efficiency. In this paper,
we focus on the improvement of the MAB method to select
the optimal transmission channel. Through the reduction
of exploration space and balancing the exploration and
exploitation (E–E) problem, fast and accurate selection re-
sults can be obtained. Our contributions are summarized
as follows.
• A state transition model based on the Gilbert–Elliott
(G–E) Markov channel is constructed. In the condi-
tion that there is lack of prior information, the effi-
cient channel selection method based on the model is
researched in CRSN.

• A novel machine learning strategy named MAB-CQ is
proposed to optimize the channel selection for SUs. On
the basis of the classical MAB theory, we innovatively
propose a solving equation containing three factors for
UCB, and the optimal channel is determined based
on UCB.
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• Furthermore, the coefficients of the exploration and
channel quality estimation are put forward. Thus,
MAB-CQ can resolve the E–E problem very well and
improve the efficiency.

• Moreover, the time complexity and convergence speed
are analysed. By comparing with other channel selec-
tion algorithms, our strategy MAB-CQ can curb inef-
ficiency exploration, so it can use less execution time
to converge faster.

The rest of the paper is organized in the following.
The system model and some basic definitions of this paper
are presented in Section 2. The novel channel selection
strategy based on MAB is proposed in Section 3. In Section
4, the simulation results are analysed and the performances
are evaluated. Finally, the conclusion of this paper is
presented in Section 5.

2. System Model

In this paper, a CRSN model with multiple PUs and mul-
tiple SUs is considered. A work scenario is assumed as
follows. Multiple PUs only represent multiple licensed
channels in CRSN, and data transmission only occurs be-
tween SUs. Among these SUs, there is a destination SU
and some source SUs with multiple sensor nodes. The des-
tination SU is responsible for collecting all the information
of source SUs. Each source SU collects their sensor data
and sends them to the destination SU by the opportunity
access licensed channel. If the source SU cannot directly
reach the destination SU in one hop, the relay SUs are
needed. So, in the process of working, the network perhaps
includes multiple SU transmission pairs and each pair in-
cludes a transmitter SU and a receiver SU. We assume that
each pair can opportunity access at least one channel in
the valid range. Based on the above, we define a universal
sensor network and the diagram is shown as Fig. 1. In
this figure, the sensor nodes may be a temperature sensor
or a humidity sensor or others according to the actual
engineering needs.

In Fig. 1, SU-D is the destination SU and other SUs
are sources. A PU represents one licensed channel. The
solid circle shows the transmission range with a radius rc
and the dashed circle shows the sensing range with a radius
rs of SU. That is, only when one SU receiver is located
in the transmission range of another SU transmitter, the
SU transmission pair can link each other for reliable com-
munications. Moreover, the transmission pair must select
a common channel at common time slots. Here, common
channel is the licensed channel within intersection area of
transmission pair. For example, SU-D and SUj is a trans-
mission pair, and they can select the common channels
PU2, PU3, PUi or PUn in the intersection area instead
of the outside PU1 and PUi+1. Of course, SU will also
face to select an available and optimal common channel for
transmission when the multiple common channels coexist.
On the contrary, if not any available common channels for
the transmission pair, the relay SU will be adopted. For
example, SU3 will send data to SU-D, the SUj will be as
a relay SU if PU3, PUi and others are not available. In
addition, we define rc ≤ rs because the available channels

Figure 1. CRSN diagram.

Table 1
Main Parameters of System Model

Type Description

s=0 Busy state of the current channel

s=1 Free state of the current channel

λ0 The lower bound of the channel belief value

λ1 The upper bound of the channel belief value

of an SU are based on the sensing range; each SU is not
allowed to communicate with other SUs outside its sensing
range because it may mistakenly use an occupied channel
by a PU [14]. In this paper, we assume that the length of
a slot is long enough to transmit a data packet.

We assume that there are N channels and each channel
is mutually independent from others. The channel is
modelled by the G–E Markov chain with two states: busy
(denoted by 0) and free (denoted by 1), that is, the finite
state space can be defined S= {0, 1}. If the channel is free,
it allows SU to occupy. However, if the channel is busy,
it will not be allowed to be used to avoid interfering with
the current user. The channel state transition probabilities
matrix can be expressed as follows:

P =

⎡
⎣ P00 P01

P10 P11

⎤
⎦ =

⎡
⎣ 1− λ0 λ0

1− λ1 λ1

⎤
⎦ (1)

and the state distribution can be expressed as follows:

p = [p0, p1] =

[
1− λ1

1− λ1 + λ0
,

λ0

1− λ1 + λ0

]
(2)

These parameters are shown in Table 1 and Fig. 2. In
(1), Pij represents the channel state transition probability
from i to j in two adjacent time slots, where i, j ∈ {0, 1}
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Figure 2. Channel state transition model.

Algorithm 1: Pseudo-code for Generate-states. This
algorithm will predict each state for each channel based
on channel transition probability and Markov Chain. λ0

and λ1 are global random matrixes. TMAX and s are
global variables. These parameters denote the network
environment of the experiment in this paper.

Initialization:
1: Set the number of time slots TMAX;
2: Initial state array: si[TMAX] = 0;
3: Set random transition threshold ϑ[TMAX];
Output: si
Execute:
4: λ0 = lamda0[i];
5: λ1 = lamda1[i];
6: For k = 1 : TMAX
7: istransfer=1;
8: If (si[k] == 0 && ϑ[k] > λ0)
9: istransfer=0;
10: End If
11: If (si[k] == 1 && ϑ[k] < λ1)
12: istransfer=0;
13: End If
14: si[k + 1] = (1− si[k]) ∗ istransfer + si[k]∗

(1− istransfer);
15: End For
End

Such as P01 represents the channel state transition proba-
bility from busy to free in two adjacent time slots. In (2),
p0 and p1 represents the state distribution of busy and free,
respectively. In this paper, we assume that λ0 and λ1 are
the boundaries of belief values of channel, and the channel
is positive correlated, which means λ0 ≤ λ1.

Because the channel state cannot be observed directly,
the next state of the system is completely calculated based
on the current state according to the transition probability
[15]. We construct the system model as the Markov chain.
According to the Markov property, the next state is only re-
lated to the current state and not to other historical states.
So, we can obtain all the channel states for each channel
based on the state transition probability. We set a flag for
the state transition condition, that is, mark 1 represents
state transition, and mark 0 represents the non-transition.
The pseudo-code is shown in Algorithm 1. In the algo-
rithm, ϑ⊂ (0, 1) and the variable “istransfer” is flag.

Although there may be multiple licensed channels
available in CRSN, the channel quality is probably vari-
able with the change of environment. It brings trouble for
transmission channel selection. Surely, to maximize the

Figure 3. Channel quality information and opportunistic
access diagram.

transmission performance, we expect to choose the optimal
channel in each time slot. In theory, an effective method
can gradually approximate this ideal state. However, to
avoid excessive overhead caused by repeated channel hand-
off, we usually choose the optimal channel in the long run
based on a large amount of statistical information. The
example diagram is shown as Fig. 3.

In Fig. 3, there are N licensed channels and SU will
opportunity access one channel among them at each time
slot or in 1 stage of time. In each time axis, there are many
rectangles and a rectangle represents a time slot or a stage
of time. Different fillers in rectangles show the different
channel states. They are “free state” with white filled and
“busy state” with dark filled. Among them, “free state
with high quality” is filled with pure white, and “free state
with low quality” is filled with the slash. With the support
of the selection strategy, the system always selects the
optimal channel for transmission in each time column. For
example, at the first time column, SU selects the “free state
with high quality” Ch3 but not the other busy channels.
At the second time slot column, SU selects the “free state
with high quality” Ch2, and it avoids the “free state with
low quality” Ch1 and other busy channels. At the third
and fifth time slot columns, SU always selects the Ch3.
It is thus clear that, from the finite visible horizon time
axis and channels, Ch3 has the most selection times. It is
because Ch3 has the most time column in “free state” and
keeps “high quality”, and it has the most opportunities to
be selected. So, it is considered as the optimal channel.

In this paper, we consider the influence of channel
state on reward. We assume that when the channel state
is busy, the transmission will be failure and a penalty
Rc < 0 will be imposed. When the channel state is free, the
transmission will be success and an award Rr > 0 will be
given. According this, we define the instantaneous actual
reward as follows:

χi(t) =

⎧⎨
⎩
Rr if the channel is free

Rc if the channel is busy
(3)

where χi(t) is the actual reward of channel i at time slot t.

393



3. Channel Selection based on multi-armed bandit
(MAB)

We assume that SU can access at least one available channel
from N channels, but the gains from different channel are
unknown. So, we can define the process of SU selecting the
channel as an MAB problem. Based on the classic MAB
theory [11], we refer to each channel as an arm separately,
and SU as a player. SU will obtain some gains after playing
one arm (namely “access a channel”). Our goal is to find
the optimal arm in a finite time and to maximize the total
gains in all time slots.

3.1 Upper Confidence Bound

In the MAB model, the player will receive some rewards
at each slot if one arm is chosen. Assuming after n time
slots, channel i has been chosen Ti(n) times by SU. Then
the expected gains mean can be expressed as follows:

ui(n) =
∑Ti(n)

k=1 χi(k)
/
Ti(n) (4)

where
∑Ti(n)

k=1 χi(k) denotes the total gains after channel i
is selected Ti(n) times in n slots. Here, each arm at least
is played once and Ti(n) ≥ 1. Then, ui(n) are the average
gains for each channel i. In [17], Chen et al. proposed the
classical strategy UCB1 and rigorously derived to balance
for the exploitation and exploration. In view of the above,
we can obtain the expected upper confidence bound:

UCBi(n) = ui(n) +
√

2 ln(n)/Ti(n) (5)

where ui(n) is the exploitation factor and
√

2 ln(n)/Ti(n)
is the exploration factor. The exploration factor is used
to explore other arms, prompting new choices not to be
too rigid with the performance of selected arms. With
the increasing times of channel i selected, the exploration
factor will decrease, but the average gains will increase.
When the channel i is selected for enough times, the
ratio of numerator and denominator tends to the smallest,
and the expected average gains are mainly determined by
ui(n). It can be seen that less exploration may lead to
local optimum; more exploration may increase the cost and
hinder the performance of the algorithm. Therefore, this
paper attempts to adjust the weight of exploration factor
to solve this problem better.

UCB1-tuned is an enhancement suggested by Auer
et al. [11] to tune the bounds more finely. Based on their
ideas, we replace the exploration factor

√
2 ln(n)/Ti(n) of

(5) with

ξi(n) =

√
ln(n)

Ti(n)
∗min

[
1

4
, ϕi(n)

]
(6)

where ϕi(n) represents a deviation factor associated with
the variance of channel i. It can reflect the fluctuations
about a series of instantaneous gains of channel i. It will

Figure 4. Convergence speed comparative (x-axis is the
logarithmic coordinate).

dynamically adjust the exploration interval of the sub-
optimal solutions and reduce the cost of exploration. The
expression is

ϕi(n) = δ2i (n) +
√

2 ln(n)/Ti(n) (7)

where δ2i (n) is about the instantaneous gains variance of
channel i. The instantaneous gains mean (the sum of
square of instantaneous gain of channel i at each time be
divided by total times selected) subtracts the square of
actual empirical gains mean of channel i. The expression is

δ2i (n) =

∑Ti(n)
k=1 χ2

i (k)

Ti(n)
− u2

i (n) (8)

where
∑Ti(n)

k=1 χ2
i (k)/Ti(n) means arithmetic mean about

the instantaneous gains. u2
i (n) represents the square of the

average gains obtained by selecting channel i Ti(n) times
in n time slots. Based on our previous research [16], [17],
we can obtain the upper confidence bound gi(n) as

gi(n) = ui(n) + ξi(n) = ui(n) +

√
ln(n)

Ti(n)
∗ min

[
1

4
, ϕi(n)

]

= ui(n)+

√√√√ ln(n)

Ti(n)
∗ min

{
1

4
,

[∑Ti(n)
k=1 χ2

i (k)

Ti(n)
−u2

i (n)+

√
2 ln(n)

Ti(n)

]}

(9)

We called this method as UCB-V (UCB-Variance) in this
paper.

Through UCB-V, the next channel to be chosen will
be determined by the value of the current gi(n). Based on
the Bellman equation, we can obtain the optimal channel
i∗ as

i∗ = argmax
i∈N

(gi(n)) (10)

To test the effect of the exploration factor, the con-
vergence speed between UCB1 and UCB-V are compared.
Under the same conditions (scenario 1 in chapter 5), the
two methods choose their own optimal channel from 20
channels, respectively. From Fig. 4, we can see that they
are all selecting the optimal fifth channel, but the selection
ratio of UCB-V goes up faster than that of UCB1. It means
that UCB-V converges faster than UCB1. This is because
the new exploration factor ξi(n) optimizes the scope of
exploration and increases the speed of exploration.
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3.2 Optimization Strategy

From the UCB-V strategy mentioned above, we can see
the exploration time can be optimized. In this section, to
further optimize the scope of exploration, a new exploration
factor associated with channel quality is considered. It
is easy to know, if the channel state is always free, i.e.,
si(k) = 1,∀k ∈ Ti(n), then we can approximate that the
quality of channel iis very good. So, based on channel
states, a confidence factor about channel quality of channel
i is defined as

Gi(n) =

∑Ti(n)
k=1 si(k)

Ti(n)
(11)

where Gi(n) is the confidence factor of channel quality and
it represents the exploitation contribution for channel i. In
addition, the ideal maximum value of expected confidence
factor within the set of channel states is defined as Gmax =
maxi∈N (Gi(n)) = 1. Then, the quality gap of each channel
i is defined as

ΔGi(n) = Gmax −Gi(n) (12)

According to the analysis in Fig. 3, the bigger the
Gi is, the smaller the ΔGi is and the better the channel
quality is. So, we should select this channel with little gap
for transmission.

To balance the quality confidence and exploration de-
gree, two coefficients α and β are defined as the exploration
coefficient for arms and channel quality, respectively. So,
we obtain an improved equation and achieve the new upper
confidence bound g′

g′i(n) = ui(n) + α ∗ ξi(n) + β ∗Gi(n) (13)

In (13), α and β are the weight coefficients about explo-
ration factor and confidence of channel quality, respec-
tively. If either or both of α and β are increased, g

′
i will

increase, which means that we trust the current channel i
more and it has a greater chance of being selected. On the
contrary, if α and β decrease, we will explore other more
channels for better quality and availability. So, formula
(10) of selecting the optimal channel can be rewritten as

i∗
′
= argmax

i∈N
(g′i(n)) (14)

In this paper, the objective function is (14) and g′i is the
upper confidence bound of the channel i and it can measure
the statistical gains of channels. That is, the channel with
greatest statistical gains is called the optimal channel and
it will be selected next time. But, the strategy’s overall
performance is also measured by parameter “regret” in the
MAB machine learning field. The strategy should aim to
minimize the regret. Here, we define the regret is: after n
time slots, the deviation between the best ideal expected
reward and the actual reward. The expression of the total
regret value is

R(n) =
n∑

t=1

(χopt − χt) = nχopt −
n∑

t=1

χt (15)

Figure 5. Learning model of MAB-CQ.

where χopt is the best expected reward in all channels. χt is
the immediate reward of the selected channel at slot t and it
may be different because of different channel selected. So,
the second item

∑n
t=1χt denotes the actual accumulation

gains in n time slots. R is the expected loss due to the
policy maybe not always get the best expected reward at
each time slot. The higher the regret value is, the more
unsuccessful the channel selection optimization algorithm
is. So, the regret value should be as low as possible.

3.3 Algorithm Description

Based on the analysis of above, the optimal value of UCB
determines the next selected channel. Through our op-
timization, g has been improved from two parts to three
parts of g′. Accordingly, a novel channel selection opti-
mization algorithm MAB-CQ is proposed. The machine
learning principle of the algorithm is as follows. First, it
generates the G–E channel states for each time slot of each
channel based on the Markov chain and then starts to ac-
cess all channels once and obtain some initial values, such
as reward and selected times. Next, it loops execution for
“computation-selection-update-computation”. After each
loop, MAB-CQ policy updates the reward once for the
current arm with maximum upper confidence bound g′.
After many cycles learning, this strategy will converge to
the optimal channel finally. The learning model is shown in
Fig. 5, and the pseudo-codes are described in Algorithms
2 and 3.

In Fig. 5, we will obtain the initial reward value for
each arm by “Play each arm once”. The “Environment”
represents channel states and state transition probabilities
and it will act on the calculation of channel reward and
upper confidence bound. The “Action” will select one best
arm in current time and calculate its reward to update
the initial reward. Then, the algorithm enters an iteration
period to search for the better one. So, we can see that
the strategy is not limited to the current best arm, but
explores for more arms through loops learning to find
global optimal arm.

To analyse the time performance of our strategy, the
time complexity of six learning algorithms is compared.
The six algorithms aim to study the optimal channel
selection. They are Q-learning [18], RCA [19], RQoS-UCB
[13], UCB [9], ε – Greedy [9] and our strategy MAB-CQ.
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Algorithm 2: Pseudo-code for Get-rewards. This algo-
rithm will count the rewards Ri of selected channel i, and
Ti is the number of times selected; n is the total number of
times for all channels selected.

Initialization:
1: Rr = 2, Rc = −0.5;
Output: Ri, Ti, n
Execute:
2: If current state is 0
3: χi = Rc;
4: Else
5: χi = Rr;
6: End if
7: Ri = Ri + χi;
8: Ti = Ti + 1;
9: n = n+ 1;
End

Algorithm 3: Pseudo-code for MAB-CQ. This is the core
algorithm in our paper.

Initialization:
1: Set arm numbers N ;
2: Set α > 0, β > 0;
3: For i=1:N /* Play each arm once and obtain the initial

values */
4: Generate-states (i);
5: Get-rewards(i);
6: End For
Output: The optimal arm i∗

′

Loop: /* Loop execution until convergence */
7: While ts < TMAX
8: For i=1:N /* Calculate the upper confidence bound

for each arm*/

9: ui(n) = Ri(n)/Ti(n);

10: ξi(n)=

√√√√√√ ln(n)
Ti(n)

∗min

⎧⎪⎨
⎪⎩

1
4 ,

[∑Ti(n)
k=1 χ2

i (k)
Ti(n)

− u2
i (n)

+
√

2 ln(n)
Ti(n)

]
⎫⎪⎬
⎪⎭;

11: Gi(n) =
∑Ti(n)

k=1 si(k)
Ti(n)

;

12: g
′
i(n) = ui(n) + α ∗ ξi(n) + β ∗Gi(n);

13: End For
14: i∗

′
= argmax

i∈N
(g

′
i(n));

15: Get-rewards(i∗
′
);

16: ts =ts+1;
17: End While
End

The results are summarized in Table 2. Our comparison is
based on the pseudo-code description of the six algorithms
in the corresponding literature. The execution frequency
is a function f(∗) on the scale of the problem, where *
denotes the symbol of problem scale. That is, it is the
sum of the operation times or the total number of times

Table 2
Algorithm Complexity

Leaning Execution Time
Algorithm Frequency Complexity

Q-learning K(6N+3) O(KN)

RCA K(3N+3) O(KN)

RQoS-UCB K(8N+6) O(KN)

UCB KD(N+7) O(KND)

ε−Greedy KD(N+13) O(KND)

MAB-CQ K(2N+3)+N O(KN)

Table 3
The Parameters in the Simulation

Parameters Value

Number of channels N =20

Time slots n=105

Award Rr =2

Penalty Rc =−0.5

Exploration coefficient α = 0.7

Confidence coefficient β = 0.3

executed about each core statements in the algorithm Time
complexity is an O function related to the function f(∗), it
means to take an expression with the highest power about
the problem scale in f(∗). In addition, it can be expressed
as T (∗) = O(f(∗)). From Algorithm 3, we can obtain the
execution frequency is about f(KN) = K(2N + 3) + N .
The calculation method is as follows: the loop count in
lines 3–6 is about N(K + 1), and the loop count in lines
7–17 is about K(N + 3). So the cumulative number
is about K(2N + 3) + N , and the time complexity is
T (KN) = O(f(KN)) = O(NK). Here, K and N are
the number of time slots and channels, respectively. The
parameter D is defined as the number of iterations in
[9] and usually it is a big constant of the same order of
magnitude as the time slots K. From “Time complexity”
in Table 2, the values of Q-learning, RCA, RQoS-UCB
and our strategy MAB-CQ are the same, that is O(KN).
But from “Execution frequency” in Table 2, our strategy
MAB-CQ performs fewer operations. When D � N , UCB
and ε − Greedy policies execute slowly, and our strategy
MAB-CQ has the best “Execution frequency” among the
six strategies. As seen in numerical analysis, it is clear that
the execute speed of our strategy MAB-CQ is faster.

4. Simulation and Performance Analysis

In this section, we test our strategy under many different
scenarios. To facilitate the analysis, we chose two repre-
sentative scenarios from these experiments to elaborate the
experimental results. The main parameters of experiments
are shown as Table 3. In addition, coefficient α and β can
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Table 4
Channel Parameters for Two Scenarios

Channel Scenario 1 Scenario 2

No. λ0 λ1 p01 p10 Select Times λ0 λ1 P01 P10 Select Times

1 0.09 0.68 0.09 0.32 92 0.25 0.92 0.25 0.08 2,043

2 0.67 0.82 0.67 0.18 1,513 0.23 0.89 0.23 0.89 1,139

3 0.15 0.55 0.15 0.45 105 0.58 0.70 0.58 0.30 344

4 0.59 0.66 0.59 0.34 374 0.29 0.50 0.29 0.50 58

5 0.83 0.92 0.83 0.08 3,988,728 0.31 0.71 0.31 0.29 255

6 0.46 0.60 0.46 0.40 340 0.18 0.47 0.18 0.53 48

7 0.60 0.71 0.60 0.29 361 0.59 0.78 0.59 0.22 638

8 0.37 0.63 0.37 0.37 228 0.52 0.78 0.52 0.22 499

9 0.24 0.85 0.24 0.15 1,273 0.21 0.65 0.21 0.35 158

10 0.15 0.38 0.15 0.62 46 0.57 0.66 0.57 0.34 271

11 0.27 0.32 0.27 0.68 80 0.80 0.98 0.80 0.02 3,988,933

12 0.26 0.61 0.26 0.39 128 0.24 0.94 0.24 0.06 3,760

13 0.22 0.70 0.22 0.30 188 0.14 0.19 0.14 0.81 54

14 0.16 0.82 0.16 0.18 573 0.31 0.49 0.31 0.51 80

15 0.20 0.51 0.20 0.49 117 0.63 0.82 0.63 0.18 882

16 0.19 0.84 0.19 0.16 767 0.53 0.63 0.53 0.37 268

17 0.04 0.94 0.04 0.06 2,844 0.32 0.47 0.32 0.53 80

18 0.29 0.60 0.29 0.40 129 0.15 0.35 0.15 0.65 71

19 0.50 0.72 0.50 0.28 585 0.53 0.67 0.53 0.33 292

20 0.66 0.83 0.66 0.17 1,529 0.15 0.75 0.15 0.25 127

be adjust, the λ0 and λ1 are randomly generated arrays
whose values are shown in Table 4.

In Table 4, the elements about channel state transition
probabilities matrix P01 and P10 are computed based on
Section 3. The select times of each channel are computed
based on Section 4.

In Table 4, the selection times are counted about 20
channels in two different scenarios. About the run time,
we first set the time slot value 106 as a round and then
loop four times. In scenario 1, we can see that channel 5
has the most select times with 3,988,728. In scenario 2,
we can see that channel 11 has the most select times with
3,988,933. They are far more than the select times of other
19 channels. Thus, our algorithm MAB-CQ chooses the
optimal channel is No. 5 under scenario 1, while it is No.
11 under scenario 2.

Next, we verify the convergence of MAB-CQ in these
two different scenarios. Fig. 6 shows the variation curve
of the percentage of channels selected with increasing time
slots in two scenarios. At a certain time slot, the higher
the curve horizontal location is, the more times the cor-
responding arm is chosen; otherwise, the arm is the less

Figure 6. Channel selection ratio in two scenarios (x-axis
is the logarithmic coordinate).

chosen. We can see from Fig. 6, about before 103 time
slots, there is no much difference in the percentage of 20
arms. This is because all arms probably are selected in
machine learning period, and at this time, their confidences
are all very low. Almost from the beginning of 103 time
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Figure 7. Channel selection in two scenarios (x-axis is the
logarithmic coordinate).

slot, the 5-th curve in the upper branch and the 11-th
curve in the lower branch of Fig. 6 are rising and they
will gradually reach to 100% in the long run. That means
that the optimal channels in the two scenarios are found
separately. From Table 4, we can also see that the 5-th
channel is the optimal channel in scenario 1, and the 11-th
channel is the optimal channel in scenario 2. It shows that
the corresponding optimal arm is the same in Table 4 and
Fig. 6.

To further verify the correctness of MAB-CQ, we carry
out the optimal channel selection experiments in scenario 1
and scenario 2 from another aspect. They are shown as the
upper branch and the lower branch of Fig. 7, respectively.
It is easy to see, after about 104 time slots, MAB-CQ
finally converges to the 5th channel and the 11th channel,
respectively. As we hope, this conclusion is consistent with
Table 4 and Fig. 6. From Fig. 7, we can see that MAB-CQ
can converge to nearly 100% after 105 time slots, no matter
scenario 1 or scenario 2.

According to above experiments, it is enough to run
105 time slots for convergence of our algorithm. To facil-
itate analysis and display, we sample every 500 time slots
at intervals and divide 105 time slots into 200 samples.
To verify the stability of MAB-CQ, we will calculate some
statistics in every 500 time slots, including statistical aver-
ages of rewards and regrets respectively. The experimental
results are shown in Figs. 8 and 9.

Figure 8 shows the fluctuations about actual average
reward in scenario 1 and scenario 2, respectively. Here, we
define the maximum instantaneous reward in 20 channels
as the ideal reward. That is, the maximum instantaneous
reward is χopt =2 in our experiments. In this part, we
test the performance of MAB-CQ by the fluctuation of the
actual reward nearby the ideal reward. It can be seen from
Fig. 8 that the average reward is not same each other at
every sample point. This is because the states of these
channels are variable and their transition probabilities
are different. So, in different sampling intervals, their
rewards are different which leads to fluctuations. But,
these fluctuations are in a smaller range and they are
gradually narrowing with the time. Compare scenario 1
with scenario 2, the trend of average reward in scenario 2
is quickly closer to the ideal reward, which shows that the

Figure 8. The fluctuation of the actual average reward
(x-axis is the linear coordinate).

Figure 9. The fluctuation of the actual average regret (x-
axis is the linear coordinate).

statistics rewards of scenario 2 is also better than that of
scenario 1.

Figure 9 is the fluctuation of the actual average regrets
in scenario 1 and scenario 2, respectively. Here, the ideal
regret value should be zero under the condition of ideal
reward. But, it can be seen from Fig. 9 that the curves
have some fluctuations. The reason is similar to Fig. 8. If
the reward increases, the regret decreases, and vice versa.
From these fluctuation curves, the trend of average regrets
in scenario 2 is closer to 0, which shows that the statistics
regrets of scenario 2 are better than that of scenario 1.
This conclusion is echoed with Fig. 8.

Even better, we change the channel parameters for
many times and repeat the experiments and the selected
result is still following the corresponding optimal arm.
From Figs. 6 to 9, MAB-CQ can find the optimal arm
in different scenarios. In conclusion, MAB-CQ has good
accuracy, reliable and robustness.
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Figure 10. Cumulative rewards and regrets comparisons
(x-axis is the logarithmic coordinate).

Finally, to verify the advantage of MAB-CQ, we do
some comparative experiments with UCB1, ε−Greedy and
UCB1-Tuned. The results are shown in Figs. 10 and 11.
The cumulative rewards and cumulative regrets in scenario
1 are shown in Fig. 10. We still divide each 500 time slots
into one statistical stage. From the upper branch of Fig. 10,
the earliest converges to the optimal cumulative rewards
is our policy MAB-CQ, i.e., from the y-axis, the curve
of MAB-CQ exceeds 800 at the earliest time among four
policies, UCB1-Tuned is next and it approached MAB-CQ
earlier than other two strategies. That is because the
instantaneous gains variance is used for optimal channel
selection in both MAB-CQ and UCB1-Tuned strategies,
which will make them faster to find good channels and thus
achieve high cumulative rewards than other two strategies.
Besides, the confidence of channel quality is also used
in MAB-CQ, so it convergences faster and obtains high
rewards earlier than UCB1-Tuned. From the lower branch
of Fig. 10, the cumulative regrets of four strategies have
the opposite order of values on the y-axis as compared with
the upper branch of Fig. 10. This is because rewards and
regrets are mutually constrained, and this conclusion is in
line with the analysis about the upper branch of Fig. 10.

In this paragraph, the execution speed is compared
among ε − Greedy, UCB1, UCB1-Tuned and Our MAB-
CQ. From Fig. 11, we can see that they all can convergence
to 100% in the long run. However, the time required for the
convergence ratio to reach 100% is quite different from each
other. First, UCB1 may take a long time to determine.
Second, ε − Greedy and UCB1-Tuned are better than
UCB1, but they both converge to 100% over 4 ∗ 105 slots.
Finally, our MAB-CQ is the fastest convergent curve and it
is close to 100% at 0.5 ∗ 105 time slot. From these data, we
know the speed of MAB-CQ is the fastest than others and
UCB1 is the slowest among them. The reason is that four
strategies use different principles to explore channels, i.e.,
UCB1, UCB1-Tuned, ε − Greedy only explore channels
based on the current reward, just only their exploration
weights are different. However, our policy MAB-CQ takes
into account the channel quality confidence in addition
to channel availability. Hence, MAB-CQ allows offering

Figure 11. Convergence speed comparison (x-axis is the
linear coordinate).

higher executing efficiency than the other strategies and it
has obvious advantages in convergence ratio.

5. Conclusion

An efficient policy named MAB-CQ is proposed about
channel selection in CRSN without sufficient prior knowl-
edge of channels. It is an innovative strategy based on the
MAB model, and it adds the confidence factor of channel
quality on the basis of the traditional MAB. The optimal
channel solution based on the improved UCB is realized.
Through machine learning and channel quality estimation,
the strategy can quickly converge to the optimal channel
and its time complexity is lower than other algorithms.
MAB-CQ solves the problems about fast convergence and
accurate channel selection in CRSN when multiple cogni-
tive wireless channels coexist. The experimental results
show that MAB-CQ is stable and reliable.
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