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ENERGY-BALANCING, LOCAL DATA
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Abstract

Geographically proximate sensor nodes usually temporally and

spatially correlated in wireless sensor networks (WSNs). Clustering

is considered to eliminate data redundancy and improve in-network

data aggregation efficiency. In this paper, an energy-balancing, local

data correlation-aware (LDCA) clustering algorithm is proposed for

WSNs. Comprehensively, considering the data correlation, energy

consumption, communication distance, and other factors, we de-

signed an average entropy and a data correlation coefficient (DCC)

to make clustering and aggregation performance more effective. It

not only measures data correlation properly but also reduces data

volume. We also use the sensor’s residual energy as one of the

key elements in the cluster-head-selection phase to achieve energy

balance. Simulation results indicate that the LDCA clustering algo-

rithm achieves a higher aggregation ratio and performs better with

respect to energy consumption and load balance compared to other

algorithms.
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1. Introduction

WSNs include a large number of small, cheap, wireless
sensor nodes with low power in a monitored environment
[1]–[3]. The sensor nodes collect lots of similar data, which
results in redundancy [4], [5]. In general, sensors have
limited resources, especially energy, but data transmission
consumes about 80% of the power [6]. Thus, transmitting
redundant data wastes energy. To solve this problem,
a clustering routing algorithm is used to eliminate this
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kind of data redundancy and improve the in-network data
aggregation efficiency. It constructs a reasonable network
topology that is fit for distributed algorithms [7].

The Low Energy Adaptive Clustering Hierarchy
(LEACH) algorithm is considered as the most popular
and classic clustering routing protocol [8]. It operates
periodically by “rounds”; each round is separated into two
phases: a cluster formation phase and a data transmission
phase. In the cluster formation phase, a node is selected
as the head of each cluster with a probability. In the data
transmission phase, each cluster member node directly
communicates with a cluster head (CH), instead of trans-
mitting data to the sink node. Many other algorithms
based on LEACH have been proposed, such as HEED
[9], EECS [10], and PEGSIS [11]. However, the major
objective of such algorithms is to design routing schemes
that can minimize communication costs. Therefore, CHs
are selected stochastically, and geographically proximate
nodes join one cluster regardless of the data correlations
between them [12].

In recent years, some data correlation-based clustering
algorithms have been proposed [13]–[16]. In these algo-
rithms, some of the data correlation models were designed
to determine the nodes that could be selected as CH nodes.
Based on the assumption that the set of all observations in
the network satisfy a Gaussian distribution, Dabirmoghad-
dam et al. used the Euclidean distance between sampled
data to describe the correlation and propose a centralized
greedy clustering algorithm [13]. However, the central-
ized algorithm increases energy costs and network latency
due to the global information. Bijan et al. proposed
a cluster head selection (CHS) methodology based on an
energy–cost ratio, which compares the total energy for all
CHs to the total network costs [14]. However, to select
the CH, the total amount of data in the previous round
of data communication and the distance between the CH
and each sensor node should be considered. Yang et al.
propose the low-energy minimum average distance algo-
rithm for cluster distribution; in this algorithm, the CHs
are selected to prolong network lifetime [15]. If the sensing
area is stable, some nodes may be selected as CHs multiple
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times. This can result in energy imbalance due to high-
energy consumption by the representative nodes. A data
density correlation degree (DDCD) clustering method is
provided in [16]. The objective of DDCD is to increase
the accuracy of the representative data. So, a correla-
tion model with many custom parameters is proposed to
measure the spatial correlation. The parameters include
the number of correlated neighbouring nodes, the distance
between the node and the data centre, and the average dis-
tance between the node and its neighbouring nodes. The
selected CH node works as a representative of its cluster
for sending gathered data to the sink node. The main
problem with these methods is the lack of an adaptive way
to confirm the parameters of the correlation model. In
addition, the energy balance problem still exists.

However, the above clustering algorithms can still be
improved by adopting proper data correlation models.
Researchers usually assume that the degree of correlation
increases with a reduction in the distance between sensors.
Some special nodes are spatially proximate but may not
be correlated, such as those near the boundary of two
separated fields. The existing algorithms may improperly
describe the data correlation.

In this paper, we present an energy-balancing LDCA
clustering algorithm to overcome these shortcomings.
Based on the Slepian–Wolf theorem [17], we design an
average entropy and a DCC to properly measure the
correlation between nearby sensors. During the CHS, we
comprehensively consider the distance, energy consump-
tion, temporal and spatial correlations, and other factors
to optimize clustering and data aggregation performance.
Finally, we consider residual node energy as one of the
key elements in the CHS phase, so the network energy
distribution is balanced.

The remainder of this paper is organized as follows:
Section 2 presents the problem statement and network
models. Section 3 defines the average entropy, the DCC,
and the details of the LDCA algorithm. Section 4 shows
the simulation results of evaluating the performance of our
clustering algorithm by comparing it to the LEACH and
DDCD algorithms. In Section 5, we provide our conclusion
and suggest our planned future work.

2. Problem Statement and Network Model

2.1 Problem Statement

In WSNs, a large number of sensor nodes are densely de-
ployed in a monitored environment. The sensors collect
data consecutively and work together to observe the sens-
ing field [5]. Therefore, the sample data have the following
features: (1) data gathered by different nodes deployed in
the same sensing area have strong correlations, which are
called spatial correlations. (2) In a stable environment,
data gathered by one node during a certain time have
strong correlations, which are called temporal correla-
tions. (3) The scene information can be described through
the comprehensive expression of all original data.

Facing the data correlation problem, researchers usu-
ally consider that spatially proximate nodes are highly

Figure 1. Data correlation between the nodes near the
boundary.

correlated. However, some nodes that have adjacent lo-
cations maybe uncorrelated in practice, such as the nodes
shown in Fig. 1. Assuming that fields A and B are sensing
different data the dashed line in Fig. 1 indicates the bound-
ary. The white nodes collect data from A and the black
nodes collect data from B. Let us take node A1 as an ex-
ample. The node lies near the boundary and its communi-
cation range is shown as the circle. Although the distance
between B1 and A1 is shorter than that between A2 and
A1, they are apparently not correlated. Therefore, using
spatial distance as the only measurement cannot solve the
data correlation problem.

Another problem is the network energy balance. In
some current clustering algorithms, CH nodes are respon-
sible for transmitting data while the cluster member nodes
are sleeping most of the time. Some nodes may work as
CH nodes for a long time, which leads to network energy
imbalance. Then, the representative nodes consume energy
so fast that the network dies very quickly.

Thus, we comprehensively consider the distance, en-
ergy consumption, local data correlation, and other factors
to measure the local data correlation, so the clustering
performance can be optimized and the network energy con-
sumption minimized. We also consider the node residual
energy as one of the key elements in the clustering phase
to achieve energy balance. The details are presented in
Section 3.

2.2 Network Model

The network model proposed in this paper is based on the
following assumptions.

(1) All N sensor nodes are distributed in the M × M
rectangular area.

(2) There is only one sink node with a fixed geographical
location and unlimited resources.

(3) Each sensor node has a unique ID and communica-
tion range r, which can be adjusted by altering the
transmitting power.

(4) The distances between sensor nodes are calculated by
the received signal power level.

Computation and communication costs are the two
main resources consumed by a sensor node. In most WSN
applications, sample data such as temperature, humidity,
and pressure are linear. In this case, we mainly consider the
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communication cost and ignore the computation process.
The transmitting energy cost is described by the following
equation:

Et =
N∑
i=1

ei × bi (1)

where ei is the energy coefficient, which is the energy
required to transmit one bit of data. According to the
first-order radio model [18], ei is directly determined by
communication distance. bi is the data coefficient, which is
the total data volume. To minimize the energy consump-
tion in our algorithm, we must make sure that (1) results in
a minimum value. In our work, we use average entropy to
achieve low communication consumption and minimize the
number of transmitted bits. Average entropy can measure
the data correlation at the same time.

3. Algorithm Description

In this section, we first introduce the Slepian–Wolf the-
orem. Then, we specifically define an average entropy
and a DCC. Finally, details of the LDCA algorithm are
presented.

3.1 Problem Statement

A theoretical method of coding two correlated sources in
lossless compression was discovered by David Slepian and
Jack K. Wolf in 1973 [17]. The Slepian–Wolf theorem
proves that two correlated sources can achieve a certain
compression efficiency without communicating with each
other in lossless compression. The Slepian–Wolf theorem
can determine the minimum number of bits per source
character required for the two encoded message streams.

According to the Slepian–Wolf theorem, two correlated
sources can achieve a coding rate equal to the joint entropy
as long as their individual rates are at least equal to the
condition entropy. The relationship can be described as
follows:

R1 ≥ H(Y |X)

R2 ≥ H(X|Y )

R1 +R2 ≥ H(X,Y )

(2)

Sensors X and Y are correlated sources. When Y
sends data to X, X can reconstruct it based on local
information. So, the output of Y can be compressed at a
rate of R1 ≥H(Y |X). Then, the total rate is minimized as
follows:

R = R1 +R2 ≥ H(Y |X) +H(X) = H(X,Y ) (3)

Thomas Cover generalized this to a situation with
multiple correlated sources to prove that the Slepian–Wolf
theorem can also be applied for the N-dimensional case [19].

Given a network S= {ni | i=1, 2, 3, . . . , N} with N
sensor nodes, where ni represents one sensor node, we use
a node as the centre and its communication range r as the

Figure 2. Relationship between entropy and mutual infor-
mation.

radius to construct a circle area. Let NSi be the neighbour
set containing all nodes within the area. According to our
analysis of the Slepian–Wolf theorem, the minimal local
data rate transmitted from Y to X can be expressed as

H(Y |X) = H(X,Y )−H(X). (4)

In information theory [20], the joint entropy can also
be defined as

H(X,Y ) = H(Y ) +H(X)− I(X;Y ), (5)

where I(X;Y ) is the mutual information between centre
node X and neighbour node Y . Mutual information is a
measurement of the information correlation, which is used
to represent the relationship between two random variables.
Figure 2 shows the relationship among all variables in (5),
and the mutual information is represented in the shaded
parts. The mutual information probability between X and
Y is given as

I(X;Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
, (6)

where p(x) and p(y) are the probability distributions of
source X and source Y , and p(x, y) is the joint probability
distribution.

According to Fig. 2, we can see that the entropy and
mutual information are highly related. Thus, we can
further discuss the correlation of the data ECC as follows:

ECC =
2I(X;Y )

H(X) +H(Y )
. (7)

Thus, the joint entropy can be described as

H(X,Y ) =

(
1− 1

2
ECC

)
(H(X) +H(Y )). (8)

By knowing the mutual information between X and
Y , we can obtain the minimal number of total transmitted
bits. However, the mutual information calculation requires
a lot of computing and exchange of a large volume of data.
This process wastes much energy and creates extra network
costs. In our work, ECC is the normalized form of the
mutual information and ranges from 0 to 1.
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3.2 DCC

According to (1), the total energy consumption can be
minimized when the network achieves a minimum data
volume. We combine the Slepian–Wolf theorem with the
clustering strategy to reduce the local data rate among
the highly correlated nodes. Thus, local data correlation
can also be measured by the condition entropy. We use
correlation coefficient ρ to estimate the joint entropy, and
design an average entropy and a DCC to obtain optimal
clustering results.

Definition 1. Average Entropy. For any node ni ∈
S, nj ∈ NSi, the average entropy Ehi is defined as

Ehi =
∑
j

H(Yj |Xi)

|NSi| =
∑
j

H(Yj)− 1

2
ρ(H(Xi) +H(Yj))

|NSi| .

(9)
The average entropy describes the average coding rate

from each node in NSi to its centre node ni. The average
entropy measures the data correlation between nodes and
ensures the minimum amount of local data transfer between
nodes. As indicated in (9), Ehi is zero if Xi is correlated
with Yi (in this case, Yi is completely determined by
Xi) and it reaches its maximum when Xi and Yi are
independent. As a result, the lower the average entropy,
the higher the increase in the correlation between node ni

and its neighbours. If node ni serves as a CH, the local
energy consumption within the cluster can be minimized.
Thus, the average entropy can determine the node’s ability
to be a CH.

Definition 2. DCC. To determine the local data cor-
relation, the DCC between node nj and ni is defined as

δij = |H(Yj |Xi)− Ehi|. (10)

Therefore, all the nodes in NSi can be divided into
two types – related nodes and unrelated nodes – according
to the decision variable tij , which mainly measures the
relationship between the mutual entropy and the average
entropy for nodes and their neighbours:

tij =

⎧⎨
⎩

1, δij ≤ ε

0, δij ≥ ε
(11)

where ε is a predefined decision threshold. If tij =1, the
nodes are related to the centre node and classified as the
related node type. If tij =0, the nodes are unrelated
to the centre node and belong to the unrelated node
type. For each node ni, we construct a related nodes set
RSi = {nj |nj ∈ NSi, tij =1} and an unrelated nodes set
USi = {nj |nj ∈NSi, tij =0}.

Definition 3. Connection Degree :

Di = |RSi| (12)

The connection degree describes the density of cor-
related nodes. As the value of Di increases, node ni is
more likely to be in the centre of the densely deployed
correlated area. Thus, we consider it as one of the criteria
in the CHS phase. The data correlation can be measured
precisely. The connection degree can also indirectly reflect
the characteristics of the geographical area.

We use the above fundamental definitions to propose
the distributed, energy-balancing, LDCA clustering algo-
rithm. The algorithm can effectively measure the local
data correlation and minimize total energy consumption.
During the clustering process, we also consider the nodes’
residual energy to achieve energy balance, so that network
lifetime is extended.

3.3 Energy-balancing LDCAClustering Algorithm

The LDCA clustering algorithm consists of three steps: the
initialization, the CHS, and the cluster formation (CF).
In the initialization phase, each node calculates its own
average entropy, DCC, and other parameters in parallel.
After this procedure, the related nodes in NSi are added
to RSi and the unrelated nodes are added to USi for each
node ni. Then, all nodes in the network initialize their
status to “ON” in preparation for the following phases.

In the CHS phase, each node exchanges an initializa-
tion message with all its neighbours to select the local
optimal nodes as cluster heads. This process includes two
steps. In Step 1, each node ni sends the ID, average en-
tropy, and connection degree to its neighbours in NSi. In
Step 2, the goal is to select a suitable cluster head accord-
ing to the local data correlation and selection rules, which
include minimal average entropy, maximal connection de-
gree, and residual energy. All the selected cluster heads
are then added to a global cluster head set and labelled as
a cluster head.

In the CF phase, cluster head nodes broadcast notifi-
cation messages in the sensor network. Other nodes must
join a cluster according to some predefined rules. There-
fore, strongly related sensor nodes are then divided into the
same cluster. First, all the cluster head nodes in C broad-
cast notification messages. Then, other nodes will receive
n messages. When n=1, the node is directly added to the
corresponding cluster and it becomes a cluster member. If
n≥ 2, there is at least one message from its RS nodes. The
node will join a cluster with the shortest communication
distance between the CH nodes. The status is labelled as
a cluster member. If all n messages are from US nodes,
the node itself will become a cluster head and set its status
to cluster head. Finally, all nodes with a cluster member
status send a message to join their cluster heads, respec-
tively. At this point, the clustering network topology has
been constructed.

4. Performance Analysis

In this section, we present the simulation experiments used
to evaluate the performance of the LDCA clustering algo-
rithm. To prove the superiority of the LDCA algorithm, we
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Figure 3. Comparison of average intra-cluster aggregation
ratios among the LDCA, LEACH, and DDCD algorithms.

compare it with the current typical algorithms including
LEACH and DDCD.

In our experiments, the dataset collected in the Intel
Berkeley Research Lab in 2004 [21] is considered. There are
54 nodes deployed in the network. We chose the communi-
cation radius r=25m and set the sampling time interval to
2 min. Then, we analysed the clustering performance, to-
tal data volume, energy consumption, and energy balance
performance.

4.1 Clustering Performance Analysis

One of our major objectives was to measure the correlations
between sensor nodes. The nodes that belong to the same
cluster have high correlation, so the data aggregation is
more effective in the network. We use the average intra-
cluster aggregation ratio Ravg to measure the clustering
performance

Ravg = 1−
∑

K
Bs/Br

K
(13)

where Br represents the total data volume received from
all cluster members, Bs represents the total data volume
forwarded by a CH node to the sink node, and K is
the number of clusters in the network. Obviously, if the
value of Ravg is large, the clustering performance is more
effective. In the experiment, we recorded the amount of
data transmission in 30 consecutive time periods during the
stable data transmission phase. The results are shown in
Fig. 3. According to the figure, the LEACH algorithm has
the lowest aggregation ratio because it does not consider
the data correlation between nodes. The DDCD and
LDCA algorithms both perform better, but the LDCA
achieves the best aggregation ratio. The results illustrate
that our algorithm can effectively measure the local data
correlation and have better clustering performance.

We changed the communication radius from 15m to
40m, simulated the LDCA algorithm repeatedly, and found
that the communication radius can influence the average
intra-cluster aggregation ratio. The relationship between
Ravg and the communication radius is shown in Fig. 4.

Figure 4. Relationship between the average intra-cluster
aggregation ratio and the communication radius.

Figure 5. Comparison of network total data volume among
the LDCA, LEACH, and DDCD algorithms.

As we know, after the clustering phase, an isolated
node will become a cluster head. In this situation, the
intra-cluster aggregation ratio equals 0. With a reduction
in the communication range, the probability of being an
isolated node increases, so the number of isolated nodes can
affect the clustering performance. Thus, we can conclude
that the communication radius plays an important role in
the improvement of clustering performance.

4.2 Total Data Volume Analysis

According to the energy analysis in Section 3, most of the
energy is consumed in data transmission, so we track the
total data volume from the CH nodes to the sink node
within a certain time period. The comparison of data
transmission among the LDCA, LEACH, and DDCD algo-
rithms is shown in Fig. 5. In the stable data transmission
phase, the LDCA algorithm has a minimum number of bits,
which means the total data rate of each cluster has been
minimized. Therefore, our algorithm effectively reduces
the amount of data transmission and performs better than
other algorithms.

4.3 Energy Consumption Analysis

We recorded the residual network energy in 60 time periods
and drew a residual energy-time curve for each algorithm,
as shown in Fig. 6. As the figure shows, in the first
several time periods, the total energy consumption of
the three algorithms is low because they are all in the
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Figure 6. Comparison of network energy consumption
among the LDCA, LEACH, and DDCD algorithms.

Figure 7. Comparison of total data transmission volume.

clustering phase. When data transmission begins, both the
LEACH and DDCD algorithms consume more energy than
LDCA. Because we comprehensively consider the distance,
energy consumption, temporal and spatial correlation, and
other factors, the LDCA conserves more energy than the
other algorithms. According to the simulation results and
analysis, our algorithm more effectively reduces energy
consumption and extends network life.

4.4 Energy Balance Analysis

Energy consumption is mainly a result of data transmis-
sion, so we tracked the total data volume (bits) that was
transmitted to the CH and compared the results of the
different clustering algorithms, as shown in Fig. 7. When
comparing the different curves, we found that the total
data transmission rate of the LDCA algorithm had the
smallest number of bits in the stable transmission stage,
thus proving that the local data transmission volume in
the cluster is reduced, and performance is better than the
LEACH and DDCD clustering algorithms.

5. Conclusion

In this paper, we proposed an energy-balancing, LDCA
clustering algorithm for WSNs. An average entropy and a
DCC were designed in our algorithm. We comprehensively
considered the communication distance, energy consump-
tion, and temporal and spatial correlations to optimize

clustering and aggregation performance and reduce the to-
tal data volume. In our simulation experiments, we com-
pared the LDCA clustering algorithm with the DDCD and
LEACH algorithms. The results indicate that the LDCA
algorithm has a higher inter-cluster average aggregation
ratio and performs better with respect to energy consump-
tion and energy balance compared to other algorithms. In
future work on the LDCA clustering algorithm, we will
focus on reducing the message overhead and designing a
data aggregation method for event detection.
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