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MODEL-FREE MULTI-KERNEL LEARNING
CONTROL FOR NONLINEAR
DISCRETE-TIME SYSTEMS
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Abstract

Reinforcement learning (RL) has become an important research topic
to solve learning control problems of nonlinear dynamic systems.
In RL, feature representation is a critical factor for improving the
performance of online or offline learning controllers. Although multi-
kernel learning has been studied in supervised learning problems,
there is little work on multi-kernel-based feature representation in
RL algorithms.

control (MMLC) approach is proposed for a class of nonlinear

In this paper, a model-free multi-kernel learning
discrete-time systems. MMLC has advantages over other single-
kernel-based RL algorithms in that the parameters in the kernel
functions can be learned adaptively. Furthermore, MMLC uses a
model-free actor—critic learning structure, where the critic is designed
to approximate the derivatives of value functions. Different from
the popularly studied dual heuristical programming algorithm, the
proposed MMLC approach can learn the dynamics of the nonlinear
system in a data-driven way. To evaluate the performance of MMLC,
single-link and double-link inverted pendulums are employed as
The effectiveness of the MMLC algorithm has
It is shown that MMLC can

achieve better performance than previous kernel-based dual heuristic

two benchmarks.

been demonstrated in simulation.

programming with partial model information.
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1. Introduction

In general, machine learning algorithms can be catego-
rized into three classes: supervised learning, unsupervised
learning and reinforcement learning (RL). Different from
supervised learning which uses labelled data, RL aims at
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learning an optimized action policy through the interac-
tion with the environment. In the past decades, there
have been many advances in the theory and practice of RL
[1]-[6]. In RL, the formalism of Markov decision process
(MDP) [7] has been a basic model to solve learning control
problems where sequential decisions are made to maximize
cumulative payoffs over uncertain outcomes. Classical RL
algorithms including Q-learning [8] and Sarsa-learning al-
ways converge slowly with huge computational costs when
the MDPs have large-scale or continuous state and action
spaces in many practical applications. This phenomenon is
considered as the “Curse of Dimensionality” which limits
the application of RL algorithms.

To deal with this problem, approximate/adaptive dy-
namic programming (ADP) as a special family of RL tech-
niques has received much attention in the machine learn-
ing and control engineering communities. One key idea
of ADP is to use function approximation methods to real-
ize generalization in large or continuous state and action
spaces. RL and ADP methods with function approxima-
tion can be divided into three groups, including policy
search [9], value function approximation (VFA) [10]-[13]
and actor—critic methods [14]. In the scheme of actor—
critic, the actor receives the signal from the critic for policy
search and the critic receives the system states and the
reward for VFA [15]. Typical online actor—critic methods
are also called adaptive critic designs (ACDs) [16], which
can be categorized as: heuristic dynamic programming,
dual heuristic dynamic programming and globalized dual
heuristic dynamic programming. In recent years, there
have been various works [17]-[20] to approximate optimal
control policies via ACDs. Meanwhile, the performance of
ACDs heavily depends on the manual setup of the critic
neural network. To deal with this problem, the study of
kernel-based RL has been studied in the literature [21]-
[23]. In [24], [25], a class of kernel-based ACDs were de-
veloped, which has the ability of automatically generating
the feature representation for the critic. However, these
single-kernel-based approaches still have some empirical
parameters to be selected.

Multiple kernel learning (MKL) [26]-[28] has been
an important research area for its two advantages com-
pared with single kernel methods. Firstly, MKL can



automatically tune the weights of a set of chosen ker-
nels rather than use the cross-validation procedure or do
lots of experiments to determine the most suitable kernel.
Secondly, the combination of multiple kernels can have
better feature representation ability than a single kernel
function. As different kernels have different measurement
scales to the similarity of sources or modalities, MKL can
be a method to combine many kinds of information sources
[29]. The existing MKL algorithms can be divided into five
major groups [26]: fixed rules, heuristic approaches, op-
timization approaches, Bayesian approaches and boosting
approaches. In recent literature, MKL has been widely ap-
plied in many fields, such as visual object recognition [30],
visual search [31], speaker verification [32], dimensional-
ity reduction [33], structured prediction [34] and brain—
computer interfacing [35].

In this paper, multiple kernel machines are integrated
in RL and a model-free multi-kernel learning control
(MMLC) algorithm is proposed for solving nonlinear con-
trol problems. There are two advantages of the proposed
approach. One advantage is that MMLC is a data-driven
RL approach so that an optimized control policy can be ob-
tained without enough prior information. The second ad-
vantage is that multi-kernel methods are used to construct
representative features for the VFA. MMLC can obtain
the suitable parameter of kernel function automatically by
combining a series of kernel functions which have differ-
ent parameters with adaptive weights. Simulation results
demonstrate that the proposed MMLC approach can avoid
the process of complicated parameter setting and it can
achieve better performance than the previous single kernel
ACDs such as kernel-based dual heuristic programming
with partial model information.

The rest of paper is organized as follows. In Section 2,
brief details about MDPs and MKL are presented. In Sec-
tion 3, the framework of multi-kernel actor—critic learning
and the proposed MMLC algorithm are presented in detail.
In Section 4, simulation results about the proposed algo-
rithm are presented on the two benchmarks. Moreover,
the final simulation result illustrates the superiority of the
proposed algorithm compared with KDHP. The conclusion
and future work are presented in Section 5.

2. Brief Introduction on MDPs and Kernel Ma-
chines

2.1 Markov Decision Processes

In RL, the whole system is usually modelled in the frame-
work of MDP as a 4-tuple (S, A, P, R), where S is the
state space, A is the action space, P is the state transition
probability and R represents the reward or punishment
from the environment. The policy 7 is a mapping from the
state space to action space. The target is to approximate
optimal policy 7* that satisfies

Jrer = maxJ,; = maxE"
™ s

S

t=0
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where -y is a discount factor and r denotes the reward with
respect to time step t, E™ [-] represents the expectation
with respect to state transition probability and the policy
m and J, is the expected entire reward along the state
trajectory with respect to the policy .

The value function V7™ (s) under the policy 7 is defined
as the expected total reward starting from the state s:

V7i(s) = ET (2)

o0

t _
E Yrelsy = s
t=0

The state value function V™ (s) satisfies the following
Bellman equation:

VT(s) = E™ [regn + YV (se41) [s¢ = 8] (3)
The optimal value function V*(s), maximizing the
total vy-discount reward, is defined as follows:

(4)

V*(s) = rnfLXE7r [reg1 + VT (St41) |$¢t = ]

Under the framework of MDP, the optimal policy can
be described as follows:

T*(s) = argrngmxlTr [Feg1 + YV (St41) |8t = s,ar = a] (5)

2.2 Kernel Machines

Based on the principle of Mercer kernel theory [36], the
positive-definite kernel function known as the Mercer kernel
is applied in the feature construction. The kernel matrix
K = [k(si,85)](1 <14,j < n) is a positive-definite matrix
with any finite set of points {s1,s2,...,8,}. The kernel
function can be represented as follows:

k(siysj)= < ¢(si), p(s5) > (6)
where k(-, ) denotes the dot product in H, and ¢(-) repre-
sents the feature vector that maps from state space S to a
high-dimensional feature space F. Therefore, the similar-
ity of two states can be easily measured through the dot
product of ¢(s;) and ¢(s;). These are geometrically de-
scribed in the dot product space also known as the feature
space F.

It can be expected that multiple kernels achieve bet-
ter performance than a single kernel for its better inter-
pretability and generalization. So, the target multi-kernel
function K(s;, sj) is described as a convex combination of
basis kernels:

L L

K(ss,85) = kal(si, sj)s.t.m =0, Zm =1

=1 =1

(7)

where L is the number of kernels. The new parameter 7
is introduced as the weight of kernel which can be learned
through online learning.



3. Model-Free Multi-Kernel Learning Control

As the MKL method is superior to single kernel methods
in feature presentation, many kernel-based learning algo-
rithms have been transformed into MKL in recent studies.
The commonly used algorithms include multiple kernel
support vector machine (SVM) [37] and multiple kernel
support vector regression (SVR) [38]. In this part, we will
make an introduction about the multi-kernel actor-critic
learning method, especially for MMLC without precise
model information. It is worth mentioning that the weights
of the basis kernels can be updated automatically through
the online learning process of MMLC.

3.1 The Overview of Model-Free Actor—Critic
Learning Control

The structure of the proposed MMLC approach includes
model identification, multi-kernel feature construction and
actor—critic learning. The model is considered as a black
box and estimated through model inputs and outputs.
Different from traditional actor—critic learning methods,
the multilayer perceptron neural network is replaced by
a kernel-based linear approximator in the critic. The new
linearized approximation structure is written as the formu-
lation:

A(s)=BT (s)2 (8)
where (2 denotes the weights vector and B denotes the
basis function. A convex combination of basis kernels (7)
is chosen to be the basis function in MMLC.

In MDP, a reward function is defined as follows:

r(s,u) = s7 Qs +ul Ru (9)
where s denotes state when the action v is performed. @
and R are both positive-definite matrices.

The process of model-free multi-kernel actor—critic
learning can be summarized in three steps. (1) Model
identification: the model information is obtained through
hundreds of data collected randomly through the plant. In
other words, these data are generated under the Gaussian
distribution and then is taken as the input of the system,
and the output needs to be observed as the samples in
the state space simultaneously. The mapping from in-
put to output can be approximated via the least-squares
approach. (2) Kernel feature construction: the kernel
dictionary is established from the collected samples by a
sparsification method such as clustering and the approxi-
mately linear dependence (ALD) analysis method [22]. (3)
Policy learning through actor—critic. Figure 1 shows the
main structure of the model-free multi-kernel actor—critic
learning.

3.2 The MMLC Algorithm

The whole algorithm procedure is described in Algorithm 1.
In MMLC, S denotes the state space and kernel function
denotes a mapping S x S — . At first, the data need to

540

Muti-kernel feature
construction

Identified
model

Figure 1. Main structure of the model-free multi-kernel
actor—critic learning.

Algorithm 1 The MMLC Algorithm

Input: A series of basis kernels in multi-kernel function
K (-,-), learning step size «(s;) in actor, positive
diagonal matrix @ and R, Gaussian kernel function
@ (-, "), the discount factor v and forgetting factor u

1: Collect samples D = {s1, s3,...,8,} and
U = (uy,us,...,u,) through the plant dynamics;

2: Generate the feature points (z41, Zaz, - - -, Tdg) from
the Samples = (D, U)T;

3: Construct the least square model y = W (z) and
calculate the W using (12);

4: Use nearest neighbor algorithm to generate

the kernel dictionary D = {s1, 82, ..., Sm};
5: Initialize n, =, o;
6: Let t = 1;
7: repeat
8:  Put current control policy 4 (s:) and current state

s¢ into the plant and observe the next state s;11
and calculate the reward r (s¢, u (s¢)) using (9);
9:  Calculate A (s¢41) through (22) and ug (s;)

through (35);

10:  Update the weights vector o (s¢41)
by (36) in actor;

11:  Calculate K (s¢), K (st+1) and WOP/0sy;

12:  Update weights = (s¢41) by (30) in critic;

13: t=t+1;

14: until the convergence condition is reached

15: return = (s¢) and o(s¢)

Output: The control policy

be sampled randomly through the black box model, so that
the state samples D = {s1,82,...,5,} and control signal

U = (u1,us,...,u,) are obtained. The kernel dictionary
D = {Sd1,842,---,Sam} 18 constructed from the samples
D = {31752a . '757L}'

Consider the identified model being described by
y =W () (10)

where

¢($) = [¢(x7xd1)7¢(x7$d2)""7¢(x7xd9)] (11)



Y = Sg41,T = (st,u(st))T and W = [wy,wa, ..., w,]7T is
the weight vector. In @ (z), (za1,Za2,...,Tag) are the
feature points extracted from the Samples = (D, U)" using
a kernel sparsification method and ¢ (-, -) denotes a kernel
function.

From (10), we have

W= (73) " a7y (12)
From the identified model (10), Osti1 and Osti1 can
ast 8ut
be easily written as follows:
8st+1 o 0P
68,5 B W@st
8st+1 o o
Gut B W@ut (13)
where
00 (99 (x,241) 09 (x,z42) 0 (z,24q4) (14)
3sf, 3st ’ aSt LR aSt
37@ _ 0¢ (v,xq1) 00 (v, Taz) 0¢ (x, ag) (15)
6Ut But ’ 6Ut LR But

In Critic, the derivative of the value function is the
approximated target that can be described as follows:

ov (St)
3st

Alse) = (16)

So the optimality equation is written as follows:

TSR TGCRUES ol )

0P TOV* (s441) L ou (s) r
08¢ 0St41 0Osy

{aiit(;lt) }T av;s(j: 1)] }
(17)

=2Qs; + YE™

X {2Ru* (s1) +vE™

In the Bellman equation (3), the optimal control policy
u* makes the state value function to be the minimum value,
so (18) can be obtained

aV* (St) o «

{ Ost41 }T OV* (s141) =0
au* (St) aSt+1

(18)

Then combining (17) and (18), the optimal derivative
of the value function is written as follows:

{wir }TA* <st+1>] (19)

A (s1) = 2Qs; +vE™ D5,
¢

Therefore, when s; is applied, the temporal difference

error is described as follows:
op " .
{Wast} A (St+1)‘| ]

(20)

3(se) = Mse) = [2Qs; +~E™C)

where A (s) is described in Critic as a linear approximation
structure (8). Combining (7) and (8), we obtain

m 1
A(se) = DO mik(se,5:)0; = 01 (nika (s, 51)

i=1 j=1
+ maka(st, 51) + - - miki(se, 51)) + O2(m ki (e, 52)
+ maka(se, s2) + - - miki(se, s2)) + - -+ Om (k1 (S, 5m)

+ Maka(St, Sm) + - miki(s5¢,5m))
(21)

where m, [, n and 6 denote the dimension of dictionary
vector, the number of kernel, the weights of different kernels
and the weights of the linear approximation structure,
respectively. And kj (s¢,s;) is the basis kernel respect to
the current state s; and the i-th kernel dictionary.

Finally, the linear approximator in the critic is written
as follows:

where the multi-kernel function I and the weights = can
be rewritten as (23) and (24), respectively

K = [kl (st,sl) s kQ (st,sl) yos .,kl (St, 81)
kl (St7 82) 9 k2 (Sta 82) Yooy kl (St; 82)

kl (St78m) 7k2 (Stvsm)a" ) kl (St7sm)]T (23)
Z = [61m,01m2,...,01m,
Oam1, 0212, . . ., 021y

0”17]1’ 0m7727 M) omnl]T (24)

Compared with single kernel methods, the ability of
feature learning is improved in multi-kernel methods, so
MMLC is possible to achieve better performance. Comb-

ing (20) and (22), we get
oy ]

= —2Qs, (25)

) (St) = K:T (St) — ’YEW(St)
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The learning target is to minimize the TD error. As-
suming the error is 0, we can get

{Wa@ }T’CT (5t+1)H Z=2Qs

T _ T(S¢)
IC (St) ")/E 78375
(26)

And multiplying K to both sides of (26), we get

)]

(27)

K (St) ICT (St) — ’}/EW(St)

== 2IC (St) QSt

So the kernel-based least squares fixed point solution
to the TD (0) learning is described as follows:

=A

[

b, (28)

n
where A,, and b,, are expressed as follows:

)]

(29)

A, = K (st) KT (s¢) — WE”(St)

bn = 2IC (St) QSt

Based on the recursive least square temporal difference
(RLS-TD) algorithm [39], the update rule in the critic is
designed as follows:

_ P(s)K(st)
Plstr) = o Pk (50
5(3t+1) = E(St) - /B(StJrl)(QQst - ftE(St))
P(si41) = % [P(s1) — B(si1) i P(s1)] (30)

where

fe=K" (s1) =B

St

{WSQS}TKT <st+1>] (31)

and (¢, i denote the learning step size and the forgetting
factor, respectively. py = ¢I, where ¢ and I are positive
real number and identity matrix, respectively.

At last, the output of the critic is represented by the
multi-kernel function in (22).

In the actor, a neural network (NN) is used for ap-
proximating the optimal control policy. The NN structure
is described as follows:

@ (st) = G (s¢,0) (32)

where o denotes the weights vector.
From (18), the optimal control policy can be repre-
sented by

1
u (st) = —5yRTTETE

35 1 T
t+ *
A
{3u* (St) } (St+1)‘| (33)
And the error is defined as

(i (s0) = ua (50))° (34)

DN | =

e(s) =
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where

T
Ud<st>:—§vR*1E“<St> Hwafi)} X(stm] (35)

In (35), m(s¢) is the control policy with respect to the
state s, and A (s¢11) represents the output of the critic.
The actor update rules are as follows:

0 (st41) = 0 (s) — a (s¢) (@ (se) — a(st)) g: EZ;

(36)

where 0 < a(s;) < 1 denotes the learning step size and
04 (s¢) /00 (s¢) can be calculated from (32).

Under the framework of MKL, the MMLC algorithm
is proposed as an improved approach of RL in two aspects.
In one aspect, MMLC contains the function of model iden-
tification, being more valuable for practical applications.
In the second aspect, the multi-kernel feature representa-
tion has stronger feature representation than single-kernel
and also avoids many of the difficulties, such as the manual
parameter setting. The advantage is that the algorithm
takes the weights of a series of basis function and multi-
kernel function in the critic into consideration together.
In other words, we do not need to decide which kernel
is the most significant and holds the heaviest weight, as
the MMLC algorithm can determine the weights of kernel
function through learning.

4. Simulation Studies

In this section, we will discuss online learning control prob-
lems to provide an assessment for the proposed MMLC
algorithm. Recent years have witnessed some control ap-
proaches designed for robotic systems [40]-[42]. In control
theory and system community, the inverted pendulum has
been studied as a commonly used benchmark for a long
time. So, a single-link inverted pendulum will be studied
at first, and a double-link pendulum as a further study will
be discussed in the next part. Recent studies of the in-
verted pendulum control problem have been carried out to
improve the robustness under uncertainties and turbulence
when faced with nonlinearity of the model, instability of
the system and some other challenges [43].

In the application of the standard dual heuristic pro-
gramming two neural networks were applied to the actor
and the critic, also known as the actor neural network
and the critic neural network. While in the kernel-based
algorithm, the critic neural network is replaced with the
linearized approximation structure as the formulation (22).
For the single-link inverted pendulum, the actor neural
network is a 3-layer neural network structure equipped
with four nodes in the input layer, 10 nodes in the hidden
layer and a node in the output layer. While in the double-
link system, the actor neural network is equipped with a
6-10-1 neural network structure. The sigmoid function ex-
pressed as f(z) = 1/(1 + e~") takes the role of activation
function from the input layer to the hidden layer as well
as the linear function described as f(x) = z act on the
transition from the hidden layer to the output layer. The
learning rate is set to be 0.3 in the actor neural network.



The NN structure is randomly initialized in its weights
that drop down into the range of [—0.5,0.5]. In the kernel-
based methods, the linearized approximator described as
(8) is used in the critic. In KDHP, single Gaussian kernel
described as k (s, s;) = exp (—||s — s;]|?/20?%) has been ap-
plied as the basis function in the critic and the parameter
of kernel function o is set to be some certain value. In
MMLC, the multi-kernel function (7) is used as the basis
function in the linearized approximator, and the important
parameters include the number of kernel function and o in
every kernel function.

In the simulation, 5,000 pairs of states and actions
were randomly collected. Not only are the kernel dic-
tionaries in kernel learning, but also feature points in
model identification generated from the samples by a
sparsification algorithm.  The nearest neighbor algo-
rithm is used in the experiment. The Gaussian kernel
¢ (z,2q;) = exp (— ||z — z4;]|?/20?) is chosen as the basis
function in @ (x). W can be calculated in (12). In the
RLS-TD algorithm, the matrix P starts at initial value
0.11, I is a unit matrix and forgetting factor u is set to
be 1. A learning trial is defined as 10,000 time steps in
learning control, and one run is made up of 500 trials.
If the inverted pendulum system can be stabilized near
the equilibrium position in one trial, the learned policy is
considered as a successful policy. If the inverted pendu-
lum system has not been stabilized near the equilibrium
after 500 trials, all parameters of learning need to be
reinitialized, and a new trial will start at an initial state.

4.1 Single-Link Inverted Pendulum

The dynamics of a single-link inverted pendulum is de-
scribed as follows:

(M +m) &+ bi —mlOcosd +mlfsind = F (37)

(I +mi?) 6 + mglsin@ = mli cos 0
where g, M, m, [, b and I denote the acceleration of
gravity, the mass of the cart, the mass of the pole, the half-
pole length, the friction function between the cart and the
flat platform and the inertia of the pole in the single-link
inverted pendulum, respectively. The difference equation
of the single-link inverted pendulum with parameters being
assigned with specific values is described as follows:

81(k+1)281(k)+782(]€)

(38)

. T
where (s1, S92, $3, 84)T = (9, 0,x, x) denotes the state and

u denotes the action. In the state space, z, &, 0 and 6 rep-
resent the cart position, cart velocity, pole angle and pole
angle velocity, respectively. And action u is the expected
force. The simulation time step 7 is 0.02s. The boundaries
of state variables should be in the following intervals:

0 € [—0.22rad, 0.22rad],d € [—2rad/s, 2rad/s]
x € [-0.5m,—-0.5m], & € [-0.8m/s,0.8m/s]
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In the meantime, the boundaries of action variables are:
u € [—10N, 10N] (40)

In this section, the dynamics is used for sampling
the data. The reward is defined as (9) where Q =
diag{1,0.2,1,0.2} and R = 0.01. For the online learning
control, the learned policy is considered as a successful
policy when the state space of inverted pendulum system
can be stabilized near the equilibrium state and hold on
at least 10,000 time steps. The discount factor = is set to
be 0.92. In online learning, the initial states are set to be
[0.05, —0.05,0.02,0.02].

It is worth mentioning that the parameter of kernel
function has a significant influence not merely on the critic
module, but also on the process and result of learning
control. That is to say, the parameters of kernel function
need to be tuned manually to adapt to the system model.
When it comes to MMLC, the combination of multiple
kernels replaces the single kernel Critic dealing with the
problem of parameter selection to a great extent. In
the initialization of MMLC, several kernel functions with
different parameters have been applied in Critic. Then,
the weights of multiple kernels can be determined in the
learning process, which means that the parameter of kernel
function will be adaptive in some known interval.

Figure 2 and Table 1 illustrate that different kernel pa-
rameters of KDHP have an obvious effect on the real-time
online learning performance. Experimental results show
that even small changes in kernel parameters can lead to
large effects in learning performance. In Table 1, the RMSE
of state and the RMSE of value function are calculated by
the mean of RMSE of every state and the RMSE of the
approximation of Critic, respectively. Furthermore, the av-
erage learning time is the statistical time for multiple runs.
Therefore, if the KDHP algorithm needs to give a suitable
policy after learning, hundreds of experiments need to set-
tle down to determine which value are proper for the kernel
parameter in the system. Nevertheless, the MMLC algo-
rithm would not trap into the dilemma of KDHP. Within
the framework of multiple kernels, the problem of choosing
parameters in kernel function is transferred to the choice
of the weights of basis kernels, and the weights converge to
certain values after online actor—critic learning.

Figure 3 shows that the proper policy for the single-
link inverted pendulum system can be quickly learned
and MMLC has a better performance than KDHP com-
pared with Fig. 2. In the simulation, the parameters
of Gaussian basis kernels are set to be [1, 1.5], [1, 1.5,
2], [1, 1.5, 2, 2.5] and [1, 1.5, 2, 2.5, 3] for 2, 3, 4
and 5 kernels, respectively. Table 2 is drawn under the
same parameters with Fig. 3. It shows that the selec-
tion of the number of the kernel in multi-kernel function
is not significant for the performance of learning control
and the selection of the parameters of Gaussian basis ker-
nels is quite straightforward and casual. Figure 4 de-
picts online learning process of MMLC for single-link in-
verted pendulum from four different initial states. 4 basis
kernels with parameters set to be [1,1.5,2,2.5] are com-
bined into a multi-kernel function unit in this simulation.
Four initial states S1(0), S2(0), S5(0), S4(0) are set to be
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0.06 _ _ _ 0.1
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Q
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Figure 2. Online learning control process of KDHP for single-link inverted pendulum employing different Gaussian kernel
parameters.

Table 1 [0.05,—0.5,0.02,0.02], [0.05,0.05,0.02,—0.4], [0.05,0.05,
RMSE of State and RMSE of Value Function of KDHP 0.02,0.4] and [0.05, 0.5, 0.02, 0.02], respectively. This result
for Single-Link Inverted Pendulum with Different Gaussian gives an assurance that MMLC algorithm can converges in
Kernel Parameters a short time; namely, this policy also can quickly produce
a controlled quantity after disturbance.
Parameter o 0.5 1 1.5 2

RMSE of state | 0.0177| 0.0335 |0.0388 | 0.0589 4.2 Double-Link Inverted Pendulum
RMSE of value 0.0121| 0.01350.0140|0.0221 To make a comprehensive comparison, the double-link
function inverted pendulum which is more complicated and more

challenging is taken as a platform of further experiments.
The dynamics of a double-link inverted pendulum is
described as follows:

Average learning | 217.2063 | 20.2016 | 9.1125 | 7.6531
time (s)

M +mq +mgy (0.5mqly + maly) cos By 0.5mals cos 05 z
(0.5m111 + mgll) cos 0 J1+ mgl% 0.5molql5 cos (91 — 6‘2) él
0.5m212 COS 6‘2 0.5m2l1l2 COS (91 - 92) Jg ég
bo — (05m111 + mgll) 9.1 sin 64 0.5mals cos O T
+ [0.5mql; cos B, b1 + ba —by — 0.5771211[2&2 sin (91 — 92) 91
0.57712[2 COS 92 —b2 — 0.5m2111292 sin (91 — 92) bg 92
0 F
+ | —(0.5mq +mga) glysind; | = | 0 (41)
—0.5mogls sin O, 0
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Figure 3. Online learning control process of MMLC for single-link inverted pendulum employing a different number of
Gaussian kernel.
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Figure 4. Online learning process of MMLC for single-link inverted pendulum from 4 different initial states.
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Table 2
RMSE of State and RMSE of Value Function of MMLC
for Single-Link Inverted Pendulum with a Different
Number of Gaussian Kernel

Number of kernel | 2 3 4 5
RMSE of state 0.0467| 0.0312| 0.0466| 0.0315
RMSE of value 0.0148 | 0.0099| 0.0138| 0.01
function

Average learning | 15.2672(12.9109 | 15.9234 | 15.1969
time (s)

where g is the acceleration of gravity, M denotes the mass
of the cart, m; and my denote the masses of the first
and second pendulums, /; and l5 denote the lengths of the
first pendulum, J; and J; denote inertia of two pendulums
respect to joints, b; and by denote the friction coefficients
on the joints and by denotes the friction coefficient between
cart and rail. Then, after parameters being assigned
with specific values, the difference equation of double-link
inverted pendulum is described as follows:

s5 (k+1) = s5 (k) + 7(86.69s2 (k) — 21.62s3 (k)

+6.64u (k)

se(k+1) = se(k) + 7(—40.31s2(k) + 39.45s3(k)
—0.088u(k)) (42)

. . NT
where (s1,s2,53,54,55,5) = (%91,92,@;91792) de-

notes the basis of state space and u denotes the action.
In the state space, z, 01, 0o, &, 6; and 6 represent cart
position, lower pole angle, upper pole angle, cart velocity,
lower pole angle velocity and upper angle velocity, respec-
tively. And action u is the expected force. The simulation
time step 7 is 0.02s. The boundaries of state variables are
in the following intervals:

z € [—0.5m,0.5m], 6, € [-0.22rad,0.22rad],
0y € [-0.22rad, 0.22 rad]

i e [-0.8m/s,0.8m/s],6; € [-2rad/s, 2rad/s|,
0y € [~2rad/s, 2rad/s]

(43)

s1(k+1) =21 (k) + 754 (k) Then, the boundaries of action variables can be de-
so(k+1) =sa(k)+ 7s5 (k) scribed as follows:
Sg(k-l—l) = Sg(k)+T86(k)
sg(k+1)=s4(k)+7u(k) u € [-10N,10N] (44)
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Figure 5. Online learning control process of KDHP for double-link inverted pendulum employing different Gaussian kernel
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Table 3

RMSE of State and RMSE of Value Function of KDHP for Double-Link Inverted Pendulum with Different Gaussian Kernel

Parameters
Parameter o 0.9 1 1.1 1.2 1.3
RMSE of state 0.0222 |0.0611 |0.112 |0.0678 |0.0463
RMSE of value function |0.0454 |0.0139 [0.0249 |0.0196 |0.0174
Average learning time (s) | 261.2344 | 154.1156 | 90.6625 | 176.1563 | 551.8021
Table 4

RMSE of State and RMSE of Value Function of MMLC for Double-Link Inverted Pendulum with a Different Number of
Gaussian Kernel

Number of Kernel 2 3 4 5
RMSE of State 0.0669 |0.0693 |0.056 0.0526
RMSE of Value Function [0.0192 [0.0195 |0.015 0.0161
Average Learning Time(s) | 170.1308 | 213.6658 | 133.7801 | 146.5846
The reward function is defined as (9) where Q = approximation structure is designed in ACDs to choose
diag {0.03,2,2,0.02,0.02,0.02} and R = 0.01. The dis- appropriate kernel-based feature representations by tun-
count factor in objective function is set to be 0.9. In ing the weights of a series of basis kernels in the learning

the online learning process, the initial states is set to be
[0.05,—0.02,0.02,0.02,0.01, —0.01].

In Fig. 5, KDHP with different kernel parameters has
been tested in the simulation. That is to say, KDHP has
a great limit of choosing parameter in the kernel, and it
is easy to fail to get a proper policy in the process. Ta-
ble 3 is drawn to display the statistical data when the
parameter is given as 0.9, 1, 1.1, 1.2, 1.3 with multiple
runs. The performance of the KDHP is shown to be af-
fected by the parameter. Figure 6 and Table 4 show the
online learning performance of MMLC. The parameters
of Gaussian basis kernels are set to be [1,1.5], [1,1.5,2],
[1,1.5,2,2.5] and [1,1.5,2,2.5,3] for 2, 3, 4 and 5 ker-
nels, respectively. From the comparison among Fig. 5
and Fig. 6 as well as Table 3 and Table 4, the selection
of parameters in MMLC is easy and the online learning
performance of MMLC without precise model informa-
tion has comparable performance compared to the KDHP
with known dynamics. This is because in the framework
of MMLC, the algorithm parameters can be adaptively
adjusted in the learning procedure. Under the multi-
kernel approach, the interpretation of data has more di-
verse scales and more abundant information. In Fig. 7,
the parameter setting in MMLC is similar with MMLC
in Fig. 4. Four initial states S1(0), S2(0), S3(0), S4(0) are
set to be [0,-0.05,0,0,0,0], [0,0.05,0,0,0,0], [0,0,0,0,
—0.3,0] and [0,0,0,0,0.3,0], respectively. Thus, this pol-
icy has enough ability to deal with any disturbance that
does not make the states exceed the limits (43).

5. Conclusion and Future Work

In this paper, an MMLC approach is proposed for a
class of nonlinear discrete-time systems. The multi-kernel
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process. Different from single-kernel-based RL methods,
the proposed MMLC approach can learn a near-optimal
control policy without model information, and reduce the
difficulty of parameter selection by using a more flexible
multi-kernel structure. Further work will be conducted in
two aspects. In one aspect, more characteristics of multi-
kernel-based ACDs will be analysed. In the other aspect,
multi-kernel based ADP algorithms will be applied and
tested on some real-world problems.
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